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Abstract

A linear forest is a disjoint union of path graphs. The linear arboricity of a graph G,
denoted by la(G), is the least number of linear forests into which the graph can be partitioned.
Clearly, la(G) ≥ ⌈∆(G)/2⌉ for any graph of maximum degree ∆(G). For the upper bound,
the long-standing Linear Arboricity Conjecture (LAC) due to Akiyama, Exoo, and Harary
from 1981 asserts that la(G) ≤ ⌈(∆(G) + 1)/2⌉. A graph is a pseudoforest if each of its
component contains at most one cycle.

In this paper, we prove that the union of any two pseudoforests of maximum degree up to
3 can be decomposed into three linear forests. Combining it with a recent result of Wdowinski
on the minimum number of pseudoforests into which that a graph can be decomposed, we
prove that the LAC holds for the following simple graph classes: k-degenerate graphs with
maximum degree ∆ ≥ 3k−1, all graphs on nonnegative Euler characteristic surfaces provided
the maximum degree ∆ ̸= 7, and graphs on negative Euler characteristic ϵ surfaces provided
the maximum degree ∆ ≥ 3

⌈
5+

√
49−24ϵ
4

⌉
− 1, as well as graphs with no Kt-minor satisfying

some conditions on maximum degrees.

Keywords: f -coloring; pseudoforest; linear arboricity

1 Introduction

In this paper, unless otherwise specified, all graphs are simple, i.e., finite undirected graphs with

no loops or multiple edges. Let G be an n-vertex graph with vertex set V (G) and edge set

E(G). The degree of a vertex v in G, written dG(v) or d(v), is the number of edges incident

to v. Denote by ∆(G) the maximum degree of G. A linear forest is a union of vertex-disjoint

paths. The linear arboricity of G, denoted by la(G), is the minimum number of linear forests

needed to partition E(G). Since it needs ⌈∆(G)/2⌉ linear forests to cover all edges incident to a

maximum degree vertex, it follows that la(G) ≥ ⌈∆(G)/2⌉. In addition, it is easy to verify that
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la(G) ≥
⌈
∆(G)+1

2

⌉
provided G is regular – each path in G is of length at most n−1, which implies

la(G) ≥ |E(G)|
n−1 = n·∆(G)

2(n−1) > ∆(G)
2 . In 1981, Akiyama, Exoo and Harary [2] conjectured that this

lower bound for regular graph is an upper bound for any simple graph, which is commonly

referred to as the linear arboricity conjecture (LAC).

Conjecture 1.1 (LAC). For every graph G, la(G) ≤
⌈
∆(G)+1

2

⌉
.

The LAC implies that ⌈∆(G)/2⌉ ≤ la(G) ≤ ⌈(∆(G) + 1)/2⌉ for every graph G. An edge

coloring of a graph is a partition of its edge set into matchings, which can be considered as a

linear forest partition where each component is a single edge. Hence, the LAC can be viewed as

an analog to Vizing’s theorem [20] that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for every simple graph G,

where χ′(G) is the chromatic index of G. After nearly 30 years since the conjecture was posted,

the famous LAC is still wide open although some progress has been made. The conjecture was

verified for graphs with maximum degree ∆ = 3, 4, 5, 6, 8, 10. (See [1, 2, 7, 10].) It was confirmed

for planar graphs by the combination of two papers [23, by Wu in 1999] and [25, by Wu and Wu

in 2008]. Furthermore, Cygan, Hou, Kowalik, Lužar and Wu in 2011 [6] conjectured that the

linear arboricity of a planar graph G is exactly ⌈∆(G)/2⌉ provided ∆(G) ≥ 5, and verified their

conjecture under most cases, leaving open only the cases when ∆(G) = 6, 8. Approximately and

asymptotically, Alon in 1988 [3] proved that la(G) ≤ ∆(G)
2 + O

(
∆(G) log log∆(G)

log∆(G)

)
. It was also

showed in the same paper that the LAC holds for graphs with girth Ω(∆). Alon and Spencer

in 1992 [4] further improved this bound. In 2019, Ferber, Fox and Jain [8] further narrowed

it to ∆(G)/2 + O(∆(G)2/3−α), where α is a positive constant. Recently, Lang and Postle [13]

announced a better bound of ∆(G)/2+3∆(G)1/2 log4∆(G). McDiarmid and Reed [16] confirmed

the LAC for random regular graphs with fixed degrees. Glock, Kühn and Osthus [9] showed that,

for a large range of p, a.a.s. the random graph G ∼ Gn,p can be decomposed into ⌈∆(G)/2⌉ linear

forests.

A pseudoforest is a graph such that every component has at most one cycle. The pseudoar-

boricity of a graph G, denoted by pa(G), is the minimum number of spanning pseudoforests

needed to partition E(G). In fact, pseudoarboricity is defined as an analogy to the arboricity

a(G), which is the minimum number of forests needed to partition E(G). Note that each forest

is a pseudoforest. Hence, pa(G) ≤ a(G). For a graph G and a function f : V (G) → N \ {0}, we

call G a degree-f pseudoforest if it is a pseudoforest such that d(v) ≤ f(v) for any v ∈ V (G).

The degree-f pseudoarboricity paf (G) of G is the minimum number of degree-f spanning pseud-

oforests needed to partition E(G). Wdowinski [22] obtained the exact value of paf (G) as follows.

Theorem 1.2. For every multigraph G and function f : V (G) → N \ {0, 1}, we have paf (G) =

max{∆f (G),pa(G)}, where ∆f (G) = max
v∈V (G)

⌈
d(v)
f(v)

⌉
.
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Wdowinski observed that every degree-4 pseudoforest can be decomposed into two linear

forests, and so, la(G) ≤ 2 pa4(G). Below is our main result, whose proof is much more involved

and deferred in Section 3.

Theorem 1.3. If F1, F2 are two degree-3 pseudoforests, then the union graph F1 ∪ F2 can be

decomposed into three edge-disjoint linear forests.

The following is an immediate corollary of Theorem 1.3.

Corollary 1.4. For every graph G, we have la(G) ≤
⌈
3
2 pa3(G)

⌉
.

Proof. Let pa3(G) = k. By definition, G can be partitioned into k degree-3 pseudoforests, say

F1, . . . , Fk. If k is even, then we pair up these k degree-3 pseudoforests as (F1, F2), (F3, F4), . . .,

(Fk−1, Fk). Otherwise, add a trivial spanning subgraph Fk+1 of G with empty edge set, which

is naturally a degree-3 pseudoforest. Pair up these k + 1 pseudoforests as (F1, F2), (F3, F4),

. . ., (Fk, Fk+1). By Theorem 1.3, the union graph of each pair can be partitioned into three

linear forests. Therefore, G can be partitioned into ⌈3k/2⌉ linear forests, which implies la(G) ≤
⌈3 pa3(G)/2⌉.

The following result shows that the LAC holds for graphs G with ∆(G) ≥ 3 pa(G)− 1.

Theorem 1.5. For any graph G with ∆(G) ≥ 3 pa(G)− 1, we have la(G) ≤
⌈
∆(G)+1

2

⌉
.

For the sake of completing the proof of Theorem 1.5, the following two observations are

needed, and the former was given by Wdowinski [22].

Observation 1.6. Every loopless multigraph G has a linear forest F such that ∆(G − F ) ≤
∆(G)− 1.

Proof. Let r = ∆(G) or ∆(G) + 1 be an even integer. Let G∗ be an r-regular graph obtained

from G by adding edges and vertices. Clearly, G ⊆ G∗. By Petersen’s theorem [17], G∗ has a

2-factor F ∗ – a spanning subgraph of G∗ in which all vertices have degree two. Let F ′ be the

graph obtained from F ∗ by removing the added edges and vertices. Then, each component of F ′

is either a path or cycle. Note that every vertex of degree ∆(G) in G must have degree at least

1 in F ′. By arbitrarily removing an edge from each cycle component in F ′, we obtain a linear

forest F also having the property that dF (v) ≥ 1 for every maximum degree vertex v ∈ V (G).

Hence, ∆(G− F ) ≤ ∆(G)− 1.
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Observation 1.7. For any k ∈ N, we have⌈
3

2

⌈
k − 1

3

⌉⌉
+ 1 =

⌈
k + 1

2

⌉
if k ≡ 1 mod 6; and⌈

3

2

⌈
k

3

⌉⌉
≤

⌈
k + 1

2

⌉
otherwise.

These relationships can be easily checked, and with the results above, we are now ready to

prove Theorem 1.5.

Proof of Theorem 1.5. Applying Theorem 1.2 with the constant function f = 3, we get the

following equality.

pa3(G) = max

{⌈
∆(G)

3

⌉
,pa(G)

}
. (1)

Combining with Corollary 1.4, we have

la(G) ≤ max

{⌈
3

2

⌈
∆(G)

3

⌉⌉
,

⌈
3

2
pa(G)

⌉}
.

Since ∆(G) ≥ 3 pa(G) − 1, it follows that
⌈
3
2 pa(G)

⌉
≤

⌈
∆(G)+1

2

⌉
. When ∆(G) ̸≡ 1 mod 6, by

Observation 1.7, we have
⌈
3
2

⌈
∆(G)

3

⌉⌉
≤

⌈
∆(G)+1

2

⌉
, which implies that la(G) ≤

⌈
∆(G)+1

2

⌉
.

Assume now that ∆(G) ≡ 1 mod 6. Let G′ = G − E(F ), where F is the linear forest

guaranteed by Observation 1.6. Then, ∆(G′) ≤ ∆(G)− 1. Hence, by applying Theorem 1.2 and

Corollary 1.4 to the graph G′, we have

la(G) ≤ la(G′) + 1 ≤ ⌈3 pa3(G′)/2⌉+ 1

= max

{⌈
3

2

⌈
∆(G′)

3

⌉⌉
+ 1,

⌈
3

2
pa(G′)

⌉
+ 1

}
≤ max

{⌈
3

2

⌈
∆(G)− 1

3

⌉⌉
+ 1,

⌈
3

2
pa(G)

⌉
+ 1

}
= max

{⌈
∆(G) + 1

2

⌉
,

⌈
3

2
pa(G)

⌉
+ 1

}
Note that when ∆(G) ≡ 1 mod 6, it is readily seen that ∆(G) ≥ 3 pa(G) − 1 is equivalent to

∆(G) ≥ 3 pa(G)+1, which in turn implies
⌈
∆(G)+1

2

⌉
≥

⌈
3
2 pa(G)

⌉
+1. Hence, la(G) ≤

⌈
∆(G)+1

2

⌉
,

which completes the proof of Theorem 1.5.

2 Applications

For any positive integer k, a graph G is k-degenerate if it can be reduced to a trivial graph by

successively removing vertices with degree at most k. The set of degenerate graphs contains many

well-known families of graphs as special subclasses. For example, planar graphs are 5-degenerate.
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The authors [5] previously proved that la(G) =
⌈
∆(G)

2

⌉
for k-degenerate graphs G with

∆(G) ≥ 2k2 − k. For the slightly weaker maximum degree requirement, they showed that

la(G) ≤
⌈
∆(G)+1

2

⌉
. More precisely, they proved that the LAC holds for any k-degenerate graph

G with ∆(G) ≥ 2k2 − 2k. Wdowinski [22] recently proved that the LAC holds for any k-

degenerate loopless multigraph G with ∆(G) ≥ 4k−2, which is a significant improvement of the

second result above. Noticing that 3k−1 ≤ 4k−2 holds for every positive integer k, we improve

Wdowinski’s result as follows.

Theorem 2.1. For any k-degenerate graph G with ∆(G) ≥ 3k − 1, we have la(G) ≤
⌈
∆(G)+1

2

⌉
.

Proof. Note that an equivalent formulation of the k-degeneracy of G is that there exists an

ordering of the vertices of G in which each vertex v is incident to at most k edges whose other

endvertex precedes v in the ordering. Observe that we can distribute these edges, each incident

to a vertex in the given ordering and having at most k edges connected to preceding vertices,

into k distinct sets. Each set, by virtue of its construction, will not contain any cycles, and hence

forms a forest. This collection of forests forms a partition of the graph G. (*We may simply say

the following: At each vertex v, by distributing the edges incident with v and a vertex precedes v

into k distinct sets, we obtain k 1-degenerate graphs. Notice that a graph is a forest if and only

if it is 1-degenerate. Thus, a k-degenerate graph can be decomposed into k forests.*) Therefore,

the arboricity a(G) ≤ k, which subsequently implies that the pseudoarboricity pa(G) ≤ k. Hence

∆(G) ≥ 3 pa(G)− 1. Thus, Theorem 2.1 follows immediately from Theorem 1.5.

Vizing [21] proved that every k-degenerate graph is class one, i.e. χ′(G) = ∆(G), provided

∆(G) ≥ 2k. He further conjectured that there is a positive number ϵ such that if k is large

enough, then every k-degenerate graph G with ∆(G) ≥ (2−ϵ)k is class one. Inspired by Vizing’s

work, we believe the following conjecture on linear forest partitions.

Conjecture 2.2. For a k-degenerate graph G, if ∆(G) ≥ 2k, then la(G) =
⌈
∆(G)

2

⌉
.

Indeed, ∆(G) ≥ 2k implies that pa(G) ≤ k ≤
⌈
∆(G)

2

⌉
. And by inputting the constant

function f = 2 in Theorem 1.2, we reach the conclusion that pa2(G) = max
{⌈

∆(G)
2

⌉
, pa(G)

}
=⌈

∆(G)
2

⌉
. Therefore, we further conjecture that la(G) = pa2(G) when ∆(G) ≥ 2k, which may

provide an approach on proving Conjecture 2.2.

As mentioned above, planar graphs are 5-degenerate. Directly applying Theorem 2.1 with

k = 5, we see that the LAC holds for all planar graphs with maximum degree at least 14. We

will show that the lower bound of maximum degree can be improved to 8. More generally, we

consider graphs with no K5-subdivision.

We say a graph G contains a graph H as a minor if H can be obtained by contracting edges
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in a subgraph of G. Analogously, one can define the topological minor which is actually used in

the following context. A graph is called an H-subdivision if it can be formed by replacing some

edges of a graph H with internally vertex-disjoint paths. We say that H is a topological minor

of a graph G if G contains an H-subdivision as a subgraph. It is routine to check that every

topological minor of a graph is also a minor. Kuratowski’s theorem states that a finite graph is

planar if and only if it does not contain a K5-subdivision or a K3,3-subdivision. Wagner proved

planar graph has the same two graphs as forbidden minors. Mader [15] obtained the following

result.

Theorem 2.3. Let G be a simple graph. If G does not contain a K5-subdivision, then |E(G)| ≤
3|V (G)| − 6.

Hakimi [11] determined the exact value of the pseudoarboricity as follows.

Theorem 2.4. For any graph G, we have

pa(G) = max
S⊆V (G),|S|≥1

⌈
e(S)

|S|

⌉
,

where e(S) is the number of edges with both endvertices in S.

As an application of Theorem 1.5, we show that the LAC holds for all graphs G with no K5

subdivision except for ∆(G) = 7.

Theorem 2.5. Let G be a graph with no K5-subdivision. If ∆(G) ̸= 7, then la(G) ≤
⌈
∆(G)+1

2

⌉
.

Proof. Let G be a graph without a K5-subdivision and ∆(G) ̸= 7. As we mentioned at the

beginning of the Introduction, the LAC holds for all graphs with maximum degree no more than

6. We assume that ∆(G) ≥ 8. By Mader’s theorem, we have |E(H)| ≤ 3|V (H)| − 6 for every

subgraph H of G. By applying Hakimi’s theorem, we have

pa(G) = max
S⊆V (G),|S|≥1

⌈
e(S)

|S|

⌉
≤ max

S⊆V (G),|S|≥1

⌈
3|S| − 6

|S|

⌉
≤ 3.

Then, 3 pa(G)− 1 ≤ 8 ≤ ∆(G). By Theorem 1.5, we have la(G) ≤
⌈
∆(G)+1

2

⌉
.

Since planar graphs do not contain K5-subdivision, the result above holds for all planar

graphs with maximum degree ∆ ̸= 7. We note that Theorem 1.5 can be applied to graphs G

when pa(G) is small according to the formula given by Hakimi’s theorem, which is particularly

appealing when applied to graphs that are embedded in a surface with a fixed Euler characteristic.

The Euler characteristic ϵ of a surface (a compact, connected 2-manifold without boundary)

Π is an integer-valued invariant of every homeomorphism type of surfaces. Let G be a connected
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graph on at least 3 vertices that has an embedding in the surface Π. Denote by F (G) the set of

faces of G. By the Euler characteristic formula, regardless of the way of embedding, we have

|V (G)| − |E(G)|+ |F (G)| = ε.

Moreover, for any embedding of G, since every face has at least three edges on its boundary and

each edge is counted at most twice when we sum up along all the face boundaries, it follows that

2|E(G)| ≥ 3|F (G)|. Combining this with the Euler characteristic formula, we have

|E(G)| ≤ 3(|V (G)| − ϵ). (2)

Since inequality 2 applies to any subgraph of G, applying Hakimi’s theorem we get pa(G) ≤ 3

provided ϵ ≥ 0. Following the exactly same proof, we have the following result.

Theorem 2.6. For any graph G embedded on a surface with nonnegative Euler characteristic,

we have la(G) ≤
⌈
∆(G)+1

2

⌉
provided ∆(G) ̸= 7.

For ϵ < 0, Wu [24] showed that la(G) =
⌈
∆(G)

2

⌉
when ∆(G) ≥

√
46− 54ε + 19. Here we

confirm that the LAC is true for graphs with much smaller maximum degree.

Theorem 2.7. For any graph G embedded on a surface with Euler characteristic ϵ < 0, we have

la(G) ≤
⌈
∆(G)+1

2

⌉
provided ∆(G) ≥ 3

⌈
5+

√
49−24ϵ
4

⌉
− 1.

Proof. For any S ⊆ V (G) with |S| ≥ 1, we first show that e(S)
|S| ≤ min{3− 3ϵ

|S| ,
|S|−1

2 }. Inequality 2

implies that e(S)
|S| ≤ 3− 3ϵ

|S| . Noticing that there are at most
(|S|

2

)
edges in the graph induced by

S, we have e(S)
|S| ≤ |S|−1

2 .

Let f(x) = min{3− 3ϵ
x ,

x−1
2 } be a function for any x > 0. Since 3− 3ϵ

x is monotonic decreasing

and x−1
2 is monotonic increasing, the maximum point x0 of f satisfies 3 − 3ϵ

x0
= x0−1

2 , so that

x0 = 7+
√
49−24ϵ
2 . It follows that f(x) ≤ f(x0) =

5+
√
49−24ϵ
4 . Therefore by Hakimi’s theorem, we

have

pa(G) = max
S⊆V (G),|S|≥1

⌈
e(S)

|S|

⌉
≤ max

S⊆V (G),|S|≥1
⌈f(|S|)⌉ ≤

⌈
5 +

√
49− 24ϵ

4

⌉
,

and so 3 pa(G)− 1 ≤ ∆(G). By Theorem 1.5, we have la(G) ≤
⌈
∆(G)+1

2

⌉
.

Even more generally, we can take the advantage of properties for graphs with forbidden

minors, noticing that graphs on a fixed surface can be characterized by a finite set of forbidden

minors by the Robertson-Seymour theorem. Let G be a graph with no Kt as a minor. When

3 ≤ t ≤ 9, Mader [14], Jørgensen [12], and Song and Thomas [18] obtained that |E(G)| <

(t − 2)|V (G)|. Clearly, this inequality also holds for any subgraph induced by a vertex set

S ⊆ V (G), which implies that
⌈
e(S)
|S|

⌉
≤ t− 2

7



Again by applying Hakimi’s theorem, we have pa(G) ≤ t − 2. Combining this with Theo-

rem 1.5, we get the following result which generalizes Theorem 2.5 and completely confirms the

LAC for graphs with no K4 as a minor.

Theorem 2.8. For t ∈ {3, 4, . . . , 9}, let G be a graph containing no Kt as a minor. If ∆(G) ≥
3t− 7, then la(G) ≤

⌈
∆(G)+1

2

⌉
.

For large positive integer t, Thomason [19] proved that a graph G with no Kt as a minor

satisfies

|E(G)| < (α+ o(1))t
√
ln t · |V (G)| ,

where α = 0.319 . . . is an explicit constant and o(1) is a function of t tending to 0 as t → ∞.

It then follows that pa(G) ≤ (α + o(1))t
√
ln t. Again by Hakimi’s Theorem, we have that

pa(G) ≤ (α+ o(1))t
√
ln t. Therefore, we may generally conclude as follows using Theorem 1.5.

Theorem 2.9. There exists a constant α = 0.319 . . . such that any graph G containing no Kt

as a minor with ∆(G) ≥ (3α+ o(1))t
√
ln t satisfies la(G) ≤

⌈
∆(G)+1

2

⌉
.

3 Proof of Theorem 1.3

We first introduce some notation that will be used in this section. Let G be a simple graph.

The complement of G, denoted by G, is the graph on the same vertex set V (G) such that two

distinct vertices of G are adjacent if and only if they are not adjacent in G. For any edge set

E∗ ⊆ E(G) ∪ E(G) regardless whether E∗ ⊆ E(G) or not, let G ± E∗ be the graph obtained

from G by adding or deleting all edges belong to E∗, and we write G± e for G± {e}. Let ⟨E∗⟩
be the graph with vertex set V (G) and edge set E∗.

Notice that ⟨E∗⟩ may have isolated vertices. A matching is a set of edges that share no

common vertex. For vertex sets U,W ⊆ V (G), let EG(U,W ) denote the set of all edges of G

joining a vertex of U with a vertex of W . The subgraph induced by U ⊆ V (G), denoted by

G[U ], is the subgraph whose vertex set is U and which contains precisely all edges of G with

both endvertices in U .

The following technical result, which serves as the foundation of this paper, guarantees The-

orem 1.3.

Theorem 3.1. Let F be a degree-3 pseudoforest, and let M− ⊆ F be a matching. Then, there

exists a matching MF ⊆ F such that both ⟨M− ∪MF ⟩ and F −MF are linear forests.

Proof of Theorem 1.3. Assume, without loss of generality, that F1 and F2 are spanning

subgraphs of a graph G. Note that ∅ is a trivial matching in F1. Applying Theorem 3.1 with
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F = F1 and M− = ∅, there exists a matching MF1 ⊆ F1 such that both ⟨M− ∪ MF1⟩, i.e.,

⟨MF1⟩, and F1−MF1 are linear forests. Note that MF1 ⊆ F2 since E(F1)∩E(F2) = ∅. Applying

Theorem 3.1 again with F = F2 and M− = MF1 , there exists a matching MF2 ⊆ F2 such that

both ⟨MF1 ∪MF2⟩ and F2 −MF2 are linear forests. Thus, we have found the three edge-disjoint

linear forests: MF1 ∪MF2 , F1 −MF1 and F2 −MF2 , whose union of edge sets is E(F1 ∪ F2).

The remainder is dedicated to the proof of Theorem 3.1. From F , by adding new edges and/or

vertices if necessary, there exists a degree-3 pseudoforest F ∗ ⊇ F such that every component of

F ∗ has a cycle and every vertex on the cycle has degree 3. For a given matching M− ⊆ F , if

Theorem 3.1 holds for F ∗, then it also holds for F because F ∗ ⊇ F is a degree-3 pseudoforest and

M−−E(F ∗) is also a matching in F ∗. Therefore, for simplicity, we assume that each component

of F has a cycle, and each vertex on the cycle has degree 3.

Let C be the set of all cycles in F . Let Vc =
⋃

C∈C V (C). For each i ≥ 0, let Vi = {v ∈ V (F ) :

dist(v, Vc) = i}. Trivially, V0 = Vc. Suppose that t is the maximum integer such that Vt ̸= ∅,
then obviously, t ≥ 1. Let Fi = F [V0 ∪ · · · ∪ Vi] for each i ∈ [t], where [t] := {0, . . . , t}. Clearly,

F0 ⊆ F1 ⊆ · · · ⊆ Ft, E(Fi −Fi−1) = EF (Vi−1, Vi) for each i ̸= 0, and C ⊆ F0 for any C ∈ C. For

any v ∈ Vc, we notice that v has exactly two neighbors on some cycle in C and one neighbor in

V1. Denote by v∗ the unique neighbor of v in V1.

Proposition 3.2. There exists a matching M1 ⊆ F1 such that both ⟨M− ∪ M1⟩ and F1 − M1

are linear forests.

The proof of Proposition 3.2 is more convoluted and is placed in Subsection 3.2.

Proposition 3.3. There exists a monotonic sequence of matchings M1 ⊆ M2 ⊆ · · · ⊆ Mt such

that the following three properties hold for each i ∈ {1, 2, . . . , t}.

(i) Mi ⊆ Fi;

(ii) ⟨M− ∪Mi⟩ is a linear forest; and

(iii) Fi −Mi is a linear forest.

Since Mt ⊆ Ft and Ft = F , the matching Mt in Proposition 3.3 is the desired matching MF

in Theorem 3.1. We first prove Proposition 3.3 by induction in Subsection 3.1.

3.1 Proof of Proposition 3.3

The existence of M1 is guaranteed by Proposition 3.2. Suppose that we have constructed a

monotonic sequence of matchings M1 ⊆ · · · ⊆ Mi for some i ∈ {1, . . . , t−1} satisfying properties
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(i), (ii) and (iii) in Proposition 3.3. We construct Mi+1 as follows based on the matching Mi.

Let Vi,3 be the set of degree 3 vertices in Fi+1 − Mi. If Vi,3 = ∅ then dFi+1−Mi(v) ≤ 2 for

any v ∈ V (Fi). Let Mi+1 := Mi. Note that Fi+1 = Fi ∪ EF (Vi, Vi+1). It is easy to check

that the matching Mi+1 satisfies properties (i), (ii) and (iii) in Proposition 3.3. Suppose now

that Vi,3 ̸= ∅. We claim that Vi,3 ⊆ Vi. Otherwise, let v ∈ Vi,3 such that v ∈ Vj for some

j ∈ [i + 1] \ {i}. If j = i + 1 then dFi+1(v) = 1, and so dFi+1−Mi(v) ≤ 1; if j ∈ [i − 1], then

dFi+1−Mi(v) = dFi−Mi(v) ≤ 2. We reach a contradiction in either case. Let Vi,3 = {v1, . . . , vs}.
Since Vi,3 ⊆ Vi and i ≥ 1, each vh ∈ Vi,3 has a unique neighbor in Vi−1, say uh, and exactly two

neighbors in Vi+1, say wh, w
′
h. Moreover, w1, w

′
1, . . . , ws, w

′
s are distinct. Since F is a degree-3

pseudoforest, uhvh /∈ Mi. Let Fi,h = Fi ∪
h⋃

k=1

{vkwk, vkw
′
k} when h ∈ {1, 2, . . . , s} and Fi,0 = Fi

for convention.

Claim 3.4. For each h ∈ {0, 1, . . . , s}, there exists a matching Mi,h ⊆ Fi,h such that ⟨M−∪Mi,h⟩
and Fi,h −Mi,h are linear forests.

Proof. Clearly, Claim 3.4 holds for h = 0 since we can let Mi,0 = Mi. Suppose h ≥ 1 and we have

the desired matching Mi,h−1 such that ⟨M− ∪Mi,h−1⟩ and Fi,h−1−Mi,h−1 are linear forests. By

definition, Mi,h−1 does not contain any edges incident to vertex vh. Consequently, all of vh, wh

and w′
h have degree at most 1 in ⟨M− ∪Mi,h−1⟩, which in turn implies that each of vh, wh and

w′
h is either an isolated vertex or an endvertex of a path component of ⟨M− ∪Mi,h−1⟩. Hence,

not all of vh, wh and w′
h are in the same component of ⟨M− ∪Mi,h−1⟩. We may assume without

loss of generality that vh and wh are in different path components of ⟨M− ∪Mi,h−1⟩, and we let

Mi,h = Mi,h−1 ∪ {vhwh}. Clearly, Mi,h ⊆ Fi,h and Mi,h is a matching. Moreover, adding edge

vhwh to ⟨M− ∪Mi,h−1⟩ does not create a cycle but combines two path components into a new

path component. Therefore, both ⟨M− ∪Mi,h⟩ and Fi,h −Mi,h are linear forests.

Applying Claim 3.4 with h = s and letting Mi+1 = Mi,s, we thus find a matching Mi+1 ⊆ Fi+1

such that ⟨M− ∪Mi+1⟩ and Fi,s −Mi+1 are linear forests, and so Fi+1 −Mi+1 is also a linear

forest. This completes the proof of Proposition 3.3.

3.2 Proof of Proposition 3.2

Let M be a matching of F1 and uv be an edge of some cycle from C. Denote by EF1(u) and

EF1(v) the sets of three edges incident to u and v in F1, respectively. Recall that u∗ and v∗ are

the unique neighbors of u and v, respectively. Then, {uu∗, uv} ⊆ EF1(u) and {vv∗, uv} ⊆ EF1(v).

If M ∩ (EF1(u) ∪ EF1(v)) ⊆ {uu∗, vv∗}, then we define the uv-switch w.r.t. M as the following

operation: M −→ M∗, where M∗ := M + uv− uu∗ − vv∗. Clearly, M∗ is still a matching of F1.
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Claim 3.5. Let uv be an edge of a cycle in C, and M be a matching of F1 such that M∩(EF1(u)∪
EF1(v)) ⊆ {uu∗, vv∗}. If u and v are in two different components Du, Dv of ⟨M− ∪ M⟩, then

after the uv-switch w.r.t. M , the union of Du and Dv becomes a disjoint union of paths and all

other components of ⟨M− ∪M⟩ are unchanged.

Proof. Note that each component of ⟨M− ∪M⟩ is either a path or an even cycle, and so are Du

and Dv. Since M ∩ EF1(u) ⊆ {uu∗}, regardless whether uu∗ ∈ Du or not, Du − uu∗ is either a

path or a disjoint union of paths with u being an endvertex of a path. If uu∗ /∈ Du, then uu∗ /∈ M ,

and so EF1(u)∩M = ∅, which implies that Du must be a path. Hence, Du−uu∗ is either a single

path or a disjoint union of paths with u being an endvertex of some path. The similar statement

holds for Dv − vv∗. Hence, Du ∪ Dv − uu∗ − vv∗ + uv is a disjoint union of paths. For any

component D of ⟨M− ∪M⟩, if D /∈ {Du, Dv}, by definition we have E(D) ∩ {uu∗, vv∗, uv} = ∅
and V (D) ∩ {u, v} = ∅, and so D − uu∗ − vv∗ + uv are unchanged.

For a matching M of F1, a cycle C ∈ C is said to be M -good if E(C) ∩ M ̸= ∅ and each

component of ⟨M− ∪ M⟩ sharing a common vertex with C is a path. Otherwise, C is said

to be M -bad, i.e., E(C) ∩ M = ∅ or there is a cycle component D of ⟨M− ∪ M⟩ such that

V (D) ∩ V (C) ̸= ∅. A matching M of F1 is called a feasible matching if it satisfies

(i) ∆(F1 −M) ≤ 2; and

(ii) E(C) ∩M = ∅ for every M -bad cycle C.

We notice that under the condition (i), the condition (ii) is equivalent to that M∩EF1(u) = {uu∗}
for every u ∈ V (C) whenever C is M -bad. And so we can conduct a uv-switch w.r.t. M for

every uv ∈ E(C) whenever C is M -bad.

We start with the matching M := {vv∗ : v ∈ Vc}. Then, ∆(F1 −M) = 2 and E(C) ∩M = ∅
for every cycle C ∈ C. By definition, every cycle of C is M -bad. Hence, M is a feasible matching,

and so the set of feasible matchings is not empty. For any two feasible matchings Ma and Mb

in F1, we write Ma ≺ Mb if every Ma-good cycle is Mb-good but not every Mb-good cycle is

Ma-good. Clearly, all feasible matchings under the order ≺ form a poset. Let M1 be a maximal

element in this poset.

Proposition 3.6. All cycles in F1 are M1-good.

Suppose that Proposition 3.6 holds. Then, E(C) ∩ M1 ̸= ∅ for any cycle C in F1, and so

F1−M1 is acyclic. Since M1 is a feasible matching, ∆(F1−M1) ≤ 2. Hence, F1−M1 is a linear

forest. Let D be a nontrivial component of ⟨M− ∪ M1⟩. Notice that ⟨M− ∪ M1⟩ is a disjoint

union of paths and cycles. We claim that D is a path. Recall that Vc is the set of vertices of
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all cycles in F . If V (D) ∩ Vc ̸= ∅, then D is a path because all cycles in F1 are M1-good. If

V (D) ∩ Vc = ∅, then E(D) ∩ M1 = ∅ because every edge of M1 ⊆ E(F1) is incident to some

vertex in Vc. Hence, D is a single edge of M−, and so D is also a path. Accordingly, ⟨M− ∪M1⟩
is a disjoint union of paths, which also shows that ⟨M− ∪M1⟩ is a linear forest. So far, we have

completed the proof of Proposition 3.2 under Proposition 3.6. The remainder is devoted to the

proof of Proposition 3.6. We assume that there is an M1-bad cycle and will reach a contradiction

to complete the proof.

For a nontrivial component D of ⟨M− ∪M1⟩, noticing that D is either a path or an even

cycle, we denote an orientation of D by ≺D as if D is a directed path or cycle. For a vertex

v ∈ V (D), let v−, v+ denote the predecessor and successor of v along the orientation ≺D if they

exist. For any u, v ∈ V (D), denote by D[u, v] the subpath of D from u to v along the orientation

≺D, and denote by D−[u, v] the subpath of D from u to v along the reversed orientation of

≺D. A chord is an edge that is not part of a cycle (resp. path) but connects two vertices

of a cycle (resp. path). Two chords xy and zw of D are crossing if exactly one of z and w,

say z, is such that x ≺D z ≺D y. Let C ⊆ F1 be an M1-bad cycle. Suppose that there is

an edge uv ∈ E(C) with endvertices u, v ∈ V (D). Since M1 is a feasible matching, we have

M1 ∩ (EF1(u) ∪ EF1(v)) = {uu∗, vv∗}, and so uu∗, vv∗ ∈ E(D), uv /∈ E(D). We call such uv

a bad-cycle-chord (b-chord) of D. When D is a cycle, we say that uv is a consistent b-chord if

either u+ = u∗ and v− = v∗, or u− = u∗ and v+ = v∗. When D is a path, we assume u ≺D v,

and say that uv is a consistent b-chord if u− = u∗ and v+ = v∗. Otherwise, we call uv an

inconsistent b-chord.

Claim 3.7. Let D be a nontrivial component of ⟨M− ∪ M1⟩. Then, the following statements

hold.

(i) For any M1-bad cycle C1, if V (C1) ⊆ V (D), then every edge of E(C1) is a consistent

b-chord of D.

(ii) For any two M1-bad cycles C1 and C2, if V (C1) ∪ V (C2) ⊆ V (D), then no two edges of

E(C1) ∪ E(C2) form a pair of crossing b-chords of D.

Proof. For (i): Suppose on the contrary that there is an edge e = uv ∈ E(C1) that is an

inconsistent b-chord of D. When D is a path, we assume that x, y are the two endvertices of

D and x ≺D u ≺D v ≺D y. By symmetry, it suffices to consider the following three cases: (1)

u+ = u∗ and v+ = v∗ when D is a path (Figure 1a); (2) u+ = u∗ and v− = v∗ when D is a path

(Figure 1b); or (3) u+ = u∗ and v+ = v∗ when D is a cycle (Figure 1c). In any of these cases, after

conducting a uv-switch w.r.t. M1, the only changed component D containing V (C1) becomes the

union of paths D∗ in ⟨M−∪M∗
1 ⟩, where M∗

1 := M1+uv−uu∗−vv∗ and D∗ := D+uv−uu∗−vv∗.
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More precisely, D∗ consists of two paths in case (1): D[x, u]uvD−[v, u∗] and D[v∗, y]; D∗ consists

of two paths in case (2): D[x, u]uvD[v, y] and D[u∗, v∗]; D∗ = D[u∗, v]vuD−[u, v∗] is a path in

case (3). Combining this with E(C∗) ∩ M∗
1 = E(C∗) ∩ M1 for any C∗ ∈ C\{C1}, we have

the following two results: C∗ is M∗
1 -good if C∗ is M1-good; C∗ is M1-bad if C∗ is M∗

1 -bad.

Since M1 is feasible matching, ∆(F1 − M1) ≤ 2 and E(C∗) ∩ M1 = ∅ if C∗ is M1-bad. So

∆(F1 −M∗
1 ) = ∆(F1 −M1 − uv+ uu∗ + vv∗) ≤ 2 and E(C∗)∩M∗

1 = ∅ if C∗ is M∗
1 -bad. Hence,

M∗
1 is a feasible matching with M1 ≺ M∗

1 . Since V (D∗) = V (D), we have V (C1) ⊆ V (D∗), and

so each component of ⟨M− ∪M∗
1 ⟩ sharing a common vertex with C1 is a path. Combining this

with uv ∈ E(C1) ∩ M∗
1 , we conclude that C1 is M∗

1 -good, which gives a contradiction to the

maximality of M1.

x u u∗ v v∗ y

D
e ∈ C1

(a) D is a path in case (1)

x u u∗ vv∗ y

D

e ∈ C1

(b) D is a path in case (2)

u u∗ v v∗

D

e ∈ C1

(c) D is a cycle in case (3)

Figure 1: Inconsistent b-chords of D

For (ii): Suppose on the contrary that there are two crossing b-chords e1 = u1v1 ∈ E(C1)

and e2 = u2v2 ∈ E(C2). We further assume that C1 = C2 if e1, e2 are on the same cycle. After

conducting the u1v1-switch and the u2v2-switch, let

M∗
1 := M1 + u1v1 + u2v2 − u1u

∗
1 − v1v

∗
1 − u2u

∗
2 − v2v

∗
2,

D∗ := D + u1v1 + u2v2 − u1u
∗
1 − v1v

∗
1 − u2u

∗
2 − v2v

∗
2.

Suppose that D is a cycle, and without loss of generality, that u1 ≺D u2 ≺D v1 ≺D v2. By

(i), both u1v1 and u2v2 are consistent b-chords of D. By symmetry, we assume that u+1 = u∗1 and

v−1 = v∗1, and consider the following two possible cases: (1) u+2 = u∗2 and v−2 = v∗2 (Figure 2a);

or (2) u−2 = u∗2 and v+2 = v∗2 (Figure 2b). In case (1), D∗ is a union of two paths: D[u∗2, v
∗
1]

and D[u∗1, u2]u2v2D[v2, u1]u1v1D[v1, v
∗
2]. In case (2), D∗ is also a union of two paths: D[u∗1, u

∗
2]

and D−[v∗1, u2]u2v2D
−[v2, v1]v1u1D

−[u1, v
∗
2]. Similarly to the discussion in Claim 3.7-(i), we have

that M1 ≺ M∗
1 and M1-bad cycle C1 becomes M∗

1 -good, giving a contradiction to the maximality

of M1.

We now assume that D is a path. Let x, y be two endvertices of D. We assume without loss

of generality that x ≺D u1 ≺D u2 ≺D v1 ≺D v2 ≺D y. Since both u1v1 and u2v2 are consistent

w.r.t. D, we have u−1 = u∗1, v+1 = v∗1, u−2 = u∗2 and v+2 = v∗2 (Figure 2c). We see that D∗ is

a union of three disjoint paths: D[x, u∗1], D[v∗2, y], and D−[u∗2, u1]u1v1D
−[v1, u2]u2v2D

−[v2, v
∗
1].
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u1 u
∗
1 v1v∗1u2 u

∗
2 v2v∗2

D

e1 ∈ C1 e2 ∈ C2

(a) D is a cycle in case (1)

u1 u
∗
1 v1v∗1u2u∗2 v2 v∗2

D

e1 ∈ C1 e2 ∈ C2

(b) D is a cycle in case (2)

x u1u∗1 v1 v∗1u2u∗2 v2 v∗2 y

D
e1 ∈ C1 e2 ∈ C2

(c) D is a path

Figure 2: Crossing b-chords of D

Similarly to the discussion in Claim 3.7-(i), we have that M1 ≺ M∗
1 and the M1-bad cycles C1, C2

become M∗
1 -good, giving a contradiction to the maximality of M1.

A cycle component D of ⟨M− ∪ M1⟩ is called a black hole if V (C) ⊆ V (D) for any cycle

C ∈ C satisfying V (C) ∩ V (D) ̸= ∅ with at most one exception |V (C) ∩ V (D)| = 1. Since we

assumed that D is a cycle in the above definition, every cycle sharing a vertex with a black hole

is M1-bad.

Claim 3.8. There is no black hole in ⟨M− ∪M1⟩.

Proof. Suppose on the contrary that there is a black hole D in ⟨M− ∪M1⟩. Let C0 denote the

only possible cycle that shares exactly one vertex with D, and let B∗ denote the set of cycles

C∗ ∈ C such that V (C∗) ⊆ V (D). Since D is a cycle component of ⟨M− ∪M1⟩, it follows that

D contains at least two edges of M1, i.e., |E(D)∩M1| ≥ 2. Since M1 ⊆ F1 and F1 = F [Vc ∪ V1],

we have |V (D) ∩ Vc| ≥ 2 which in turn shows B∗ ̸= ∅.

Let E(B∗) := ∪C∗∈B∗E(C∗). We define an auxiliary graph G with V (G) = V (D) and

E(G) = E(D) ∪ E(B∗). Recall that every cycle sharing a vertex with a black hole is M1-bad.

Since M1 is feasible matching, every edge in E(B∗) is a b-chord of D. By Claim 3.7-(ii), no two

edges of E(B∗) are crossing w.r.t. D. Hence, G can be drawn on the plane as an outerplanar

graph, where D is the boundary and all edges in E(B∗) are chords of G (Figure 3).

If C0 exists, then let v0 be the unique vertex in V (C0) ∩ V (D), otherwise, let v0 be an

arbitrary vertex not incident to any e ∈ E (B∗), which exists by outerplanarity. Each edge

e ∈ E(B∗) divides the interior region of D into two parts: R1
e whose closure contains v0, and R0

e
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D

v0

z

y

C1
x

C0...

Figure 3: An illustration of the outerplanar graph G

whose closure does not contain v0. Of all edges on E(B∗), let e1 be one such that R1
e1 contains

most number of cycles in B∗, and let C1 ∈ B∗ be the cycle containing e1. We claim that for any

edge e ∈ E(C1), R0
e contains no cycle in B∗ other than C1 itself. Otherwise, we suppose that

there exists some edge e2 ∈ E(C1) such that R0
e2 contains another cycle C2 ∈ B∗ other than C1

itself. Then, for any edge e3 ∈ C2, R1
e3 contains more cycles than R1

e1 , giving a contradiction.

Since C1 has at least three edges, C1 contains two consecutive edges xy and yz such that

both R0
xy and R0

yz contain no cycles of B∗. Assume without loss generality that x ≺D y ≺D z.

Since M1 is feasible and C1 is M1-bad, we have M1 ∩EF1(u) = {uu∗} for every u ∈ V (C1), and

so xx∗, yy∗, zz∗ ∈ E(D). By Claim 3.7-(i), both xy and yz are consistent. Then, either x− = x∗

and y+ = y∗, or x+ = x∗ and y− = y∗. Suppose first that x− = x∗ and y+ = y∗. Recall that

xx∗, yy∗ ∈ M1. Since D is a component of ⟨M− ∪M1⟩, we have that xx+, yy− ∈ M−. Since xy

is a chord of D, it follows that x+ ̸= y, and so xx+ ̸= yy−. Hence, D[x+, y−] contains at least

one edge of M1, which in turn shows that it intersects with some cycle in C. Therefore, there

is a cycle of B∗ in R0
xy, giving a contradiction. We now suppose that x+ = x∗ and y− = y∗.

Then, z+ = z∗. In the same fashion above, we can show that R0
yz contains a cycle of B∗, giving

a contradiction.

Claim 3.9. If D is a path component in ⟨M− ∪ M1⟩, then V (C) \ V (D) ̸= ∅ for any M1-bad

cycle C.

Proof. Suppose on the contrary that there exists an M1-bad cycle C such that V (C) ⊆ V (D).

By Claim 3.7-(ii), no two edges of C are crossing b-chords w.r.t. D. Note that C has at least

three edges. Thus there are two consecutive edges uv, vw ∈ E(C) such that u ≺D v ≺D w. By

Claim 3.7-(i), both uv and vw are consistent w.r.t. D. However, when uv is consistent, we have

u− = u∗ and v+ = v∗, which implies that vw is not consistent, giving a contradiction.

A cycle C ∈ C is a single-point-unchangeable (SPU) if the following is true: for any component
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D in ⟨M−∪M1⟩, if V (D)∩V (C) ̸= ∅ then D is a cycle and |V (D)∩V (C)| = 1, i.e., components

of ⟨M− ∪M1⟩ sharing a common vertex with C are cycles, and each of them shares exactly one

vertex of C.

Claim 3.10. If an M1-bad cycle C intersects with at least two components of ⟨M− ∪M1⟩, then

C is an SPU.

Proof. Suppose on the contrary that C is not an SPU. Let C = u0u1 · · ·usu0, and for convention,

let us+1 = u0. Since C is an M1-bad cycle and M1 is a feasible matching, M1 ∩ EF1(ui) =

{uiu∗i } for each i ∈ {0, . . . , s} and the uiui+1-switch can be conducted. We will identify a set of

independent edges uiui+1 for i ∈ {1, . . . , s}, and then do uiui+1-switches for all these edges to

get a feasible matching M∗
1 such that M1 ≺ M∗

1 and C is M∗
1 -good cycle, giving a contradiction

to the maximality of M1. Let D be the set of all components of ⟨M− ∪M1⟩ sharing at least one

vertex with C. By assumption, we have |D| ≥ 2.

We first consider the case that all components in D are paths. Since |D| ≥ 2, we may assume

that u0 and u1 are contained in two different path components D0, D1 ∈ D. We do u0u1-switch

and let M∗
1 = M1 + u0u1 − u0u

∗
0 − u1u

∗
1. By Claim 3.5, every component of ⟨M− ∪M∗

1 ⟩ sharing

a vertex with C is still a path, while after the switch, C is M∗
1 -good since E(C)∩M∗

1 = {u0u1}.
For any M1-good cycle C∗ ∈ C\{C}, C∗ is M∗

1 -good since E(C∗)∩M∗
1 = E(C∗)∩M1. Moreover,

since the u0u1-switch changes no other M1-bad cycles, it is easy to check that M∗
1 is a feasible

matching, and therefore, M1 ≺ M∗
1 . This contradicts to the maximality of M1.

Suppose now that there exists one cycle component in D. Denote by DC the set of all cycle

components in D. Since C is not an SPU, D either contains a path, or contains a cycle that shares

at least two vertices with C. So, we assume that D0 ∈ D is a path if there is one, otherwise is a

cycle satisfying |V (D0)∩V (C)| ≥ 2. In both cases, we assume that u0 ∈ V (D0) and us /∈ V (D0)

because C intersects at least two components in D.

We claim that there exists some index i ∈ {1, . . . , s} such that ui belongs to a cycle component

and ui+1 belongs to a different component which may be a path or a cycle. If D0 is a path, then

such i exists and 1 ≤ i ≤ s because of DC ̸= ∅ and us /∈ V (D0); if D0 is a cycle, then such i

exists and 1 ≤ i ≤ s− 1 because of |V (D0) ∩ V (C)| ≥ 2 and us /∈ V (D0). Let i1 be the smallest

index with above property.

Suppose that we have picked vertices ui1 , . . . , uit for t ≥ 1 with above property. For each

j ∈ {1, . . . , t}, we denote the corresponding cycle component that uij belongs to by Dj and

the cycle or path component that uij+1 belongs to by D∗
i . If DC \ {D1, D

∗
1, . . . , Dt, D

∗
t } = ∅,

then we stop. Otherwise, let it+1 be the smallest index in {it + 2, . . . , s} such that uit+1 is on a

cycle component in DC \{D1, . . . , Dt} and uit+1+1 belongs to a different component. We assume
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without loss of generality that uit+1 ∈ V (Dt+1) and uit+1+1 ∈ V (D∗
t+1). Assume this process

terminates at uiℓ . Then, {D1, D
∗
1, . . . , Dℓ, D

∗
ℓ} ⊇ DC and the cycles D1, . . . , Dℓ are mutually

distinct. Recall that 1 ≤ iℓ ≤ s, and so edges set {uijuij+1 : 1 ≤ j ≤ ℓ} are independent.

We do ui1ui1+1-switch, . . ., uiℓuiℓ+1-switch w.r.t. M1 and let M∗
1 :=M1−

⋃ℓ
j=1{uiju∗ij , uij+1u

∗
ij+1}

+
⋃ℓ

j=1{uijuij+1}. Since edges set {uijuij+1 : 1 ≤ j ≤ ℓ} are independent and M1 ∩ (EF1(uij ) ∪
EF1(uij+1) = {uiju∗ij , uij+1u

∗
ij+1}, we have that M∗

1 is a matching of F1. By applying Claim 3.5

repeatedly, we see that the subgraph of ⟨M− ∪ M∗
1 ⟩ induced by

⋃ℓ
j=1

(
V (Dij ) ∪ V (D∗

ij
)
)

is

a disjoint union of paths. So, all components in ⟨M− ∪ M∗
1 ⟩ intersecting with C are paths.

Combining this with
⋃ℓ

j=1{uijuij+1} ⊆ E(C) ∩ M∗
1 , we have that C is M∗

1 -good. Note that

E(C∗) ∩M∗
1 = E(C∗) ∩M1 for any cycle C∗ ∈ C\{C}. Similarly to the discussion in the first

case, we can verify that M∗
1 is feasible matching with M1 ≺ M∗

1 , giving a contradiction to the

maximality of M1.

Now we are ready to complete the proof of Proposition 3.6 that all cycles in F1 are M1-good.

Proof of Proposition 3.6: Suppose on the contrary that there exists some M1-bad cycles in

F1. Let B be the set of all M1-bad cycles in F1. Let

B1 = {C ∈ B : C is an SPU}, and

B2 = {C ∈ B : V (C) ⊆ V (D) for some component D of ⟨M− ∪M1⟩}.

By Claim 3.10, we have B = B1 ∪ B2 and B1 ∩ B2 = ∅. By assumption, B ≠ ∅. We now

consider the following cases on whether B1 = ∅ or not.

Case 1: B1 = ∅. In this case, B2 = B ̸= ∅. Let C ∈ B2 and D be the component of ⟨M− ∪M1⟩
such that V (C) ⊆ V (D). By Claim 3.9, we see that D is a cycle. By definition, any cycle C∗ ∈ C
having nonempty intersection with D is M1-bad, i.e., C∗ ∈ B. And so C∗ ∈ B2 because of B1 = ∅,
which in turn implies that V (C∗) ⊆ V (D). Hence, D is a black hole, giving a contradiction to

Claim 3.8.

Case 2: B1 ̸= ∅. Define an auxiliary multi-hypergraph H with V (H) = B1; and for each

component D of ⟨M− ∪M1⟩ intersecting with at least two SPUs, we define an edge ED of H by

ED = {C ∈ B1 : V (C) ∩ V (D) ̸= ∅}. A Berge cycle of length ℓ in a hypergraph is a set of ℓ

distinct vertices {v1, . . . , vℓ} and ℓ distinct edges {e1, . . . , eℓ} such that {vi, vi+1} ⊆ ei.

We claim that H contains a Berge cycle. Suppose on the contrary that H does not contain

a Berge cycle. Then, there exists some vertex C ∈ V (H) such that dH(C) ≤ 1, i.e., there

exists at most one component of ⟨M− ∪M1⟩ that intersects C and another SPU. Denote such a

component by D0 if exists. Note that |V (C) ∩ V (D0)| = 1. Since M1 ∩ EF1(v) = {vv∗} for any

v ∈ V (C), there exists another component, say D, of ⟨M− ∪M1⟩ intersecting with C. Since C
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is an SPU, it follows that |V (C) ∩ V (D)| = 1 and D is a cycle. Hence, for any C∗ ∈ B \ {C},
if V (C∗) ∩ V (D) ̸= ∅ then C∗ is M1-bad. If C∗ ∈ B1, then ED is an edge of H by definition,

which in turn shows dH(C) ≥ 2, giving a contradiction. Thus, C∗ ∈ B2, which in turn gives

V (C∗) ⊆ V (D). Therefore, D is a black hole, giving a contradiction to Claim 3.8.

Let B = C1C2 · · ·CmC1 be a Berge cycle of length m in H, and let ED1 , . . . , EDm be the

edges in E(H) such that {Ci, Ci+1} ⊆ EDi for i ∈ {1, . . . ,m} where Cm+1 = C1. Since both Ci

and Ci+1 are SPUs, we have that Di is a cycle and |V (Ci)∩V (Di)| = |V (Ci+1)∩V (Di)| = 1. Let

vi ∈ V (Ci) ∩ V (Di) and wi ∈ V (Ci+1) ∩ V (Di). Then, v1, w1, . . ., vm, wm are distinct vertices.

Let C1 = v1x1 . . . xtv1. For each vertex xi, let Dxi be the component of ⟨M−∪M1⟩ containing

xi. Since C is an SPU, Dxi is a cycle and V (Dxi) ∩ V (C1) = {xi}. If t is even, we do x1x2-

switch,. . ., xt−1xt-switch w.r.t. M1 and let M1,1 = M1 + {x1x2, x3x4, . . . , xt−1xt} −
⋃t

i=1{xix∗i }.
By Claim 3.5, every component of ⟨M− ∪ M1,1⟩ sharing a vertex with C1 is a path except

for D1. If t is odd, we do v1x1-switch, . . . , xt−1xt-switch w.r.t. M1 and let M1,1 = M1 +

{v1x1, x2x3, . . . , xt−1xt}−{v1v∗1}−
⋃t

i=1{xix∗i }. By Claim 3.5, every component of ⟨M−∪M1,1⟩
sharing a vertex with C1 is a path. For both parities of t, since wm ∈ V (C1) = V (Cm+1) and

wm ̸= v1, it follows that the cycle component Dm become a path component of ⟨M− ∪M1,1⟩.

Let C2 = v2y1 . . . ysv2. Similarly to the discussion above, after a sequence of uv-switch in

C2, we get M1,2 from M1,1 such that every component of ⟨M− ∪M1,2⟩ sharing a vertex with C2

is a path except for D2. Since w1 ∈ V (C2) and w1 ̸= v2, it follows that the cycle component D1

becomes a path component in ⟨M− ∪M1,2⟩ if it was unchanged when we worked on C1.

Continuing this procedure in such way, we get M1,m from M1,m−1 such that every component

of ⟨M− ∪ M1,m⟩ sharing a vertex with Cm is a path except for Dm. But, Dm has become a

part of a path component in ⟨M− ∪ M1,1⟩. In summary, all cycles M1-good cycles C1, . . . , Cm

become M1,m-good. Note that E(C∗) ∩ M∗
1 = E(C∗) ∩ M1 for any C∗ ∈ C\{C1, . . . , Cm} and

M1 ∩ EF1(v) = {vv∗} for any v ∈ V (C1 ∪ . . . ∪ Cm). It follows that M1,m is a feasible matching

and all M1-good cycles are M1,m-good, i.e., M1 ≺ M∗
1 , giving a contradiction to the maximality

of M1, which completes our proof.
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