A Decomposition Method on Solving the Linear Arboricity Conjecture

Guantao, ${ }^{* 1}$, Yanli Hao ${ }^{\dagger 2}$, and Guoning Yu ${ }^{\ddagger 1}$
${ }^{1}$ Dept. of Mathematics and Statistics, Georgia State University, Altanta, GA 30303
${ }^{2}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

A linear forest is a disjoint union of path graphs. The linear arboricity of a graph G, denoted by la (G), is the least number of linear forests into which the graph can be partitioned. Clearly, la $(G) \geq\lceil\Delta(G) / 2\rceil$ for any graph of maximum degree $\Delta(G)$. For the upper bound, the long-standing Linear Arboricity Conjecture (LAC) due to Akiyama, Exoo, and Harary from 1981 asserts that $\operatorname{la}(G) \leq\lceil(\Delta(G)+1) / 2\rceil$. A graph is a pseudoforest if each of its component contains at most one cycle.

In this paper, we prove that the union of any two pseudoforests of maximum degree up to 3 can be decomposed into three linear forests. Combining it with a recent result of Wdowinski on the minimum number of pseudoforests into which that a graph can be decomposed, we prove that the LAC holds for the following simple graph classes: k-degenerate graphs with maximum degree $\Delta \geq 3 k-1$, all graphs on nonnegative Euler characteristic surfaces provided the maximum degree $\Delta \neq 7$, and graphs on negative Euler characteristic ϵ surfaces provided the maximum degree $\Delta \geq 3\left\lceil\frac{5+\sqrt{49-24 \epsilon}}{4}\right\rceil-1$, as well as graphs with no K_{t}-minor satisfying some conditions on maximum degrees.

Keywords: f-coloring; pseudoforest; linear arboricity

1 Introduction

In this paper, unless otherwise specified, all graphs are simple, i.e., finite undirected graphs with no loops or multiple edges. Let G be an n-vertex graph with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex v in G, written $d_{G}(v)$ or $d(v)$, is the number of edges incident to v. Denote by $\Delta(G)$ the maximum degree of G. A linear forest is a union of vertex-disjoint paths. The linear arboricity of G, denoted by $\operatorname{la}(G)$, is the minimum number of linear forests needed to partition $E(G)$. Since it needs $\lceil\Delta(G) / 2\rceil$ linear forests to cover all edges incident to a maximum degree vertex, it follows that $\operatorname{la}(G) \geq\lceil\Delta(G) / 2\rceil$. In addition, it is easy to verify that

[^0]$\operatorname{la}(G) \geq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ provided G is regular - each path in G is of length at most $n-1$, which implies $\operatorname{la}(G) \geq \frac{|E(G)|}{n-1}=\frac{n \cdot \Delta(G)}{2(n-1)}>\frac{\Delta(G)}{2}$. In 1981, Akiyama, Exoo and Harary [2] conjectured that this lower bound for regular graph is an upper bound for any simple graph, which is commonly referred to as the linear arboricity conjecture (LAC).

Conjecture 1.1 (LAC). For every graph $G, \operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

The LAC implies that $\lceil\Delta(G) / 2\rceil \leq \mathrm{la}(G) \leq\lceil(\Delta(G)+1) / 2\rceil$ for every graph G. An edge coloring of a graph is a partition of its edge set into matchings, which can be considered as a linear forest partition where each component is a single edge. Hence, the LAC can be viewed as an analog to Vizing's theorem [20] that $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$ for every simple graph G, where $\chi^{\prime}(G)$ is the chromatic index of G. After nearly 30 years since the conjecture was posted, the famous LAC is still wide open although some progress has been made. The conjecture was verified for graphs with maximum degree $\Delta=3,4,5,6,8,10$. (See [1, 2, 7, 7, 10].) It was confirmed for planar graphs by the combination of two papers [23, by Wu in 1999] and [25, by Wu and Wu in 2008]. Furthermore, Cygan, Hou, Kowalik, Lužar and Wu in 2011 [6] conjectured that the linear arboricity of a planar graph G is exactly $\lceil\Delta(G) / 2\rceil$ provided $\Delta(G) \geq 5$, and verified their conjecture under most cases, leaving open only the cases when $\Delta(G)=6,8$. Approximately and asymptotically, Alon in 1988 [3] proved that $\operatorname{la}(G) \leq \frac{\Delta(G)}{2}+O\left(\frac{\Delta(G) \log \log \Delta(G)}{\log \Delta(G)}\right)$. It was also showed in the same paper that the LAC holds for graphs with girth $\Omega(\Delta)$. Alon and Spencer in 1992 [4] further improved this bound. In 2019, Ferber, Fox and Jain [8] further narrowed it to $\Delta(G) / 2+O\left(\Delta(G)^{2 / 3-\alpha}\right)$, where α is a positive constant. Recently, Lang and Postle [13] announced a better bound of $\Delta(G) / 2+3 \Delta(G)^{1 / 2} \log ^{4} \Delta(G)$. McDiarmid and Reed [16] confirmed the LAC for random regular graphs with fixed degrees. Glock, Kühn and Osthus [9] showed that, for a large range of p, a.a.s. the random graph $G \sim G_{n, p}$ can be decomposed into $\lceil\Delta(G) / 2\rceil$ linear forests.

A pseudoforest is a graph such that every component has at most one cycle. The pseudoarboricity of a graph G, denoted by $\mathrm{pa}(G)$, is the minimum number of spanning pseudoforests needed to partition $E(G)$. In fact, pseudoarboricity is defined as an analogy to the arboricity $\mathrm{a}(G)$, which is the minimum number of forests needed to partition $E(G)$. Note that each forest is a pseudoforest. Hence, $\mathrm{pa}(G) \leq \mathrm{a}(G)$. For a graph G and a function $f: V(G) \rightarrow \mathbb{N} \backslash\{0\}$, we call G a degree-f pseudoforest if it is a pseudoforest such that $d(v) \leq f(v)$ for any $v \in V(G)$. The degree- f pseudoarboricity $\mathrm{pa}_{f}(G)$ of G is the minimum number of degree- f spanning pseudoforests needed to partition $E(G)$. Wdowinski [22] obtained the exact value of $\mathrm{pa}_{f}(G)$ as follows.

Theorem 1.2. For every multigraph G and function $f: V(G) \rightarrow \mathbb{N} \backslash\{0,1\}$, we have $\mathrm{pa}_{f}(G)=$ $\max \left\{\Delta_{f}(G), \mathrm{pa}(G)\right\}$, where $\Delta_{f}(G)=\max _{v \in V(G)}\left\lceil\frac{d(v)}{f(v)}\right\rceil$.

Wdowinski observed that every degree-4 pseudoforest can be decomposed into two linear forests, and so, $\mathrm{la}(G) \leq 2 \mathrm{pa}_{4}(G)$. Below is our main result, whose proof is much more involved and deferred in Section 3.

Theorem 1.3. If F_{1}, F_{2} are two degree-3 pseudoforests, then the union graph $F_{1} \cup F_{2}$ can be decomposed into three edge-disjoint linear forests.

The following is an immediate corollary of Theorem 1.3 .
Corollary 1.4. For every graph G, we have $\mathrm{la}(G) \leq\left\lceil\frac{3}{2} \mathrm{pa}_{3}(G)\right\rceil$.

Proof. Let $\operatorname{pa}_{3}(G)=k$. By definition, G can be partitioned into k degree-3 pseudoforests, say F_{1}, \ldots, F_{k}. If k is even, then we pair up these k degree-3 pseudoforests as $\left(F_{1}, F_{2}\right),\left(F_{3}, F_{4}\right), \ldots$, $\left(F_{k-1}, F_{k}\right)$. Otherwise, add a trivial spanning subgraph F_{k+1} of G with empty edge set, which is naturally a degree-3 pseudoforest. Pair up these $k+1$ pseudoforests as $\left(F_{1}, F_{2}\right),\left(F_{3}, F_{4}\right)$, $\ldots,\left(F_{k}, F_{k+1}\right)$. By Theorem 1.3, the union graph of each pair can be partitioned into three linear forests. Therefore, G can be partitioned into $\lceil 3 k / 2\rceil$ linear forests, which implies $\operatorname{la}(G) \leq$ $\left\lceil 3 \mathrm{pa}_{3}(G) / 2\right\rceil$.

The following result shows that the LAC holds for graphs G with $\Delta(G) \geq 3 \mathrm{pa}(G)-1$.
Theorem 1.5. For any graph G with $\Delta(G) \geq 3 \mathrm{pa}(G)-1$, we have $\operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.
For the sake of completing the proof of Theorem 1.5, the following two observations are needed, and the former was given by Wdowinski [22].

Observation 1.6. Every loopless multigraph G has a linear forest F such that $\Delta(G-F) \leq$ $\Delta(G)-1$.

Proof. Let $r=\Delta(G)$ or $\Delta(G)+1$ be an even integer. Let G^{*} be an r-regular graph obtained from G by adding edges and vertices. Clearly, $G \subseteq G^{*}$. By Petersen's theorem [17], G^{*} has a 2-factor F^{*} - a spanning subgraph of G^{*} in which all vertices have degree two. Let F^{\prime} be the graph obtained from F^{*} by removing the added edges and vertices. Then, each component of F^{\prime} is either a path or cycle. Note that every vertex of degree $\Delta(G)$ in G must have degree at least 1 in F^{\prime}. By arbitrarily removing an edge from each cycle component in F^{\prime}, we obtain a linear forest F also having the property that $d_{F}(v) \geq 1$ for every maximum degree vertex $v \in V(G)$. Hence, $\Delta(G-F) \leq \Delta(G)-1$.

Observation 1.7. For any $k \in \mathbb{N}$, we have

$$
\begin{array}{rlrl}
\left\lceil\frac{3}{2}\left\lceil\frac{k-1}{3}\right\rceil\right\rceil+1 & =\left\lceil\frac{k+1}{2}\right\rceil & \text { if } k \equiv 1 \bmod 6 ; \text { and } \\
\left\lceil\frac{3}{2}\left\lceil\frac{k}{3}\right\rceil\right\rceil & \leq\left\lceil\frac{k+1}{2}\right\rceil & & \text { otherwise. }
\end{array}
$$

These relationships can be easily checked, and with the results above, we are now ready to prove Theorem 1.5 .

Proof of Theorem 1.5. Applying Theorem 1.2 with the constant function $f=3$, we get the following equality.

$$
\begin{equation*}
\operatorname{pa}_{3}(G)=\max \left\{\left\lceil\frac{\Delta(G)}{3}\right\rceil, \mathrm{pa}(G)\right\} \tag{1}
\end{equation*}
$$

Combining with Corollary 1.4 , we have

$$
\mathrm{la}(G) \leq \max \left\{\left\lceil\frac{3}{2}\left\lceil\frac{\Delta(G)}{3}\right\rceil\right\rceil,\left\lceil\frac{3}{2} \mathrm{pa}(G)\right\rceil\right\}
$$

Since $\Delta(G) \geq 3 \mathrm{pa}(G)-1$, it follows that $\left\lceil\frac{3}{2} \mathrm{pa}(G)\right\rceil \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$. When $\Delta(G) \not \equiv 1 \bmod 6$, by Observation 1.7. we have $\left\lceil\frac{3}{2}\left\lceil\frac{\Delta(G)}{3}\right\rceil\right\rceil \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$, which implies that la $(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

Assume now that $\Delta(G) \equiv 1 \bmod 6$. Let $G^{\prime}=G-E(F)$, where F is the linear forest guaranteed by Observation 1.6. Then, $\Delta\left(G^{\prime}\right) \leq \Delta(G)-1$. Hence, by applying Theorem 1.2 and Corollary 1.4 to the graph G^{\prime}, we have

$$
\begin{aligned}
\mathrm{la}(G) & \leq \operatorname{la}\left(G^{\prime}\right)+1 \leq\left\lceil 3 \mathrm{pa}_{3}\left(G^{\prime}\right) / 2\right\rceil+1 \\
& =\max \left\{\left\lceil\frac{3}{2}\left\lceil\frac{\Delta\left(G^{\prime}\right)}{3}\right\rceil\right]+1,\left\lceil\frac{3}{2} \mathrm{pa}\left(G^{\prime}\right)\right\rceil+1\right\} \\
& \leq \max \left\{\left\lceil\frac{3}{2}\left\lceil\frac{\Delta(G)-1}{3}\right\rceil\right]+1,\left\lceil\frac{3}{2} \mathrm{pa}(G)\right]+1\right\} \\
& =\max \left\{\left\lceil\frac{\Delta(G)+1}{2}\right\rceil,\left\lceil\frac{3}{2} \mathrm{pa}(G)\right\rceil+1\right\}
\end{aligned}
$$

Note that when $\Delta(G) \equiv 1 \bmod 6$, it is readily seen that $\Delta(G) \geq 3 \mathrm{pa}(G)-1$ is equivalent to $\Delta(G) \geq 3 \mathrm{pa}(G)+1$, which in turn implies $\left\lceil\frac{\Delta(G)+1}{2}\right\rceil \geq\left\lceil\frac{3}{2} \mathrm{pa}(G)\right\rceil+1$. Hence, la $(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$, which completes the proof of Theorem 1.5.

2 Applications

For any positive integer k, a graph G is k-degenerate if it can be reduced to a trivial graph by successively removing vertices with degree at most k. The set of degenerate graphs contains many well-known families of graphs as special subclasses. For example, planar graphs are 5-degenerate.

The authors [5] previously proved that $\operatorname{la}(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for k-degenerate graphs G with $\Delta(G) \geq 2 k^{2}-k$. For the slightly weaker maximum degree requirement, they showed that $\mathrm{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$. More precisely, they proved that the LAC holds for any k-degenerate graph G with $\Delta(G) \geq 2 k^{2}-2 k$. Wdowinski [22] recently proved that the LAC holds for any k degenerate loopless multigraph G with $\Delta(G) \geq 4 k-2$, which is a significant improvement of the second result above. Noticing that $3 k-1 \leq 4 k-2$ holds for every positive integer k, we improve Wdowinski's result as follows.
Theorem 2.1. For any k-degenerate graph G with $\Delta(G) \geq 3 k-1$, we have $\operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

Proof. Note that an equivalent formulation of the k-degeneracy of G is that there exists an ordering of the vertices of G in which each vertex v is incident to at most k edges whose other endvertex precedes v in the ordering. Observe that we can distribute these edges, each incident to a vertex in the given ordering and having at most k edges connected to preceding vertices, into k distinct sets. Each set, by virtue of its construction, will not contain any cycles, and hence forms a forest. This collection of forests forms a partition of the graph G. (*We may simply say the following: At each vertex v, by distributing the edges incident with v and a vertex precedes v into k distinct sets, we obtain k 1-degenerate graphs. Notice that a graph is a forest if and only if it is 1 -degenerate. Thus, a k-degenerate graph can be decomposed into k forests.*) Therefore, the arboricity $\mathrm{a}(G) \leq k$, which subsequently implies that the pseudoarboricity $\mathrm{pa}(G) \leq k$. Hence $\Delta(G) \geq 3 \mathrm{pa}(G)-1$. Thus, Theorem 2.1 follows immediately from Theorem 1.5 .

Vizing [21] proved that every k-degenerate graph is class one, i.e. $\chi^{\prime}(G)=\Delta(G)$, provided $\Delta(G) \geq 2 k$. He further conjectured that there is a positive number ϵ such that if k is large enough, then every k-degenerate graph G with $\Delta(G) \geq(2-\epsilon) k$ is class one. Inspired by Vizing's work, we believe the following conjecture on linear forest partitions.

Conjecture 2.2. For a k-degenerate graph G, if $\Delta(G) \geq 2 k$, then $\operatorname{la}(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$.
Indeed, $\Delta(G) \geq 2 k$ implies that $\mathrm{pa}(G) \leq k \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$. And by inputting the constant function $f=2$ in Theorem 1.2. we reach the conclusion that $\operatorname{pa}_{2}(G)=\max \left\{\left\lceil\frac{\Delta(G)}{2}\right\rceil, \operatorname{pa}(G)\right\}=$ $\left\lceil\frac{\Delta(G)}{2}\right\rceil$. Therefore, we further conjecture that $\mathrm{la}(G)=\mathrm{pa}_{2}(G)$ when $\Delta(G) \geq 2 k$, which may provide an approach on proving Conjecture 2.2 .

As mentioned above, planar graphs are 5-degenerate. Directly applying Theorem 2.1 with $k=5$, we see that the LAC holds for all planar graphs with maximum degree at least 14 . We will show that the lower bound of maximum degree can be improved to 8 . More generally, we consider graphs with no K_{5}-subdivision.

We say a graph G contains a graph H as a minor if H can be obtained by contracting edges
in a subgraph of G. Analogously, one can define the topological minor which is actually used in the following context. A graph is called an H-subdivision if it can be formed by replacing some edges of a graph H with internally vertex-disjoint paths. We say that H is a topological minor of a graph G if G contains an H-subdivision as a subgraph. It is routine to check that every topological minor of a graph is also a minor. Kuratowski's theorem states that a finite graph is planar if and only if it does not contain a K_{5}-subdivision or a $K_{3,3}$-subdivision. Wagner proved planar graph has the same two graphs as forbidden minors. Mader [15] obtained the following result.

Theorem 2.3. Let G be a simple graph. If G does not contain a K_{5}-subdivision, then $|E(G)| \leq$ $3|V(G)|-6$.

Hakimi [11] determined the exact value of the pseudoarboricity as follows.
Theorem 2.4. For any graph G, we have

$$
\operatorname{pa}(G)=\max _{S \subseteq V(G),|S| \geq 1}\left\lceil\frac{e(S)}{|S|}\right\rceil,
$$

where $e(S)$ is the number of edges with both endvertices in S.

As an application of Theorem 1.5, we show that the LAC holds for all graphs G with no K_{5} subdivision except for $\Delta(G)=7$.
Theorem 2.5. Let G be a graph with no K_{5}-subdivision. If $\Delta(G) \neq 7$, then $\operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

Proof. Let G be a graph without a K_{5}-subdivision and $\Delta(G) \neq 7$. As we mentioned at the beginning of the Introduction, the LAC holds for all graphs with maximum degree no more than 6. We assume that $\Delta(G) \geq 8$. By Mader's theorem, we have $|E(H)| \leq 3|V(H)|-6$ for every subgraph H of G. By applying Hakimi's theorem, we have

$$
\operatorname{pa}(G)=\max _{S \subseteq V(G),|S| \geq 1}\left\lceil\frac{e(S)}{|S|}\right\rceil \leq \max _{S \subseteq V(G),|S| \geq 1}\left\lceil\frac{3|S|-6}{|S|}\right\rceil \leq 3 .
$$

Then, $3 \mathrm{pa}(G)-1 \leq 8 \leq \Delta(G)$. By Theorem 1.5 , we have la $(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

Since planar graphs do not contain K_{5}-subdivision, the result above holds for all planar graphs with maximum degree $\Delta \neq 7$. We note that Theorem 1.5 can be applied to graphs G when $\mathrm{pa}(G)$ is small according to the formula given by Hakimi's theorem, which is particularly appealing when applied to graphs that are embedded in a surface with a fixed Euler characteristic.

The Euler characteristic ϵ of a surface (a compact, connected 2-manifold without boundary) Π is an integer-valued invariant of every homeomorphism type of surfaces. Let G be a connected
graph on at least 3 vertices that has an embedding in the surface Π. Denote by $F(G)$ the set of faces of G. By the Euler characteristic formula, regardless of the way of embedding, we have

$$
|V(G)|-|E(G)|+|F(G)|=\varepsilon
$$

Moreover, for any embedding of G, since every face has at least three edges on its boundary and each edge is counted at most twice when we sum up along all the face boundaries, it follows that $2|E(G)| \geq 3|F(G)|$. Combining this with the Euler characteristic formula, we have

$$
\begin{equation*}
|E(G)| \leq 3(|V(G)|-\epsilon) \tag{2}
\end{equation*}
$$

Since inequality 2 applies to any subgraph of G, applying Hakimi's theorem we get $\mathrm{pa}(G) \leq 3$ provided $\epsilon \geq 0$. Following the exactly same proof, we have the following result.

Theorem 2.6. For any graph G embedded on a surface with nonnegative Euler characteristic, we have $\operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ provided $\Delta(G) \neq 7$.

For $\epsilon<0$, Wu [24] showed that $\operatorname{la}(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$ when $\Delta(G) \geq \sqrt{46-54 \varepsilon}+19$. Here we confirm that the LAC is true for graphs with much smaller maximum degree.

Theorem 2.7. For any graph G embedded on a surface with Euler characteristic $\epsilon<0$, we have $\mathrm{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ provided $\Delta(G) \geq 3\left\lceil\frac{5+\sqrt{49-24 \epsilon}}{4}\right\rceil-1$.

Proof. For any $S \subseteq V(G)$ with $|S| \geq 1$, we first show that $\frac{e(S)}{|S|} \leq \min \left\{3-\frac{3 \epsilon}{|S|}, \frac{|S|-1}{2}\right\}$. Inequality 2 implies that $\frac{e(S)}{|S|} \leq 3-\frac{3 \epsilon}{|S|}$. Noticing that there are at most $\binom{|S|}{2}$ edges in the graph induced by S, we have $\frac{e(S)}{|S|} \leq \frac{|S|-1}{2}$.

Let $f(x)=\min \left\{3-\frac{3 \epsilon}{x}, \frac{x-1}{2}\right\}$ be a function for any $x>0$. Since $3-\frac{3 \epsilon}{x}$ is monotonic decreasing and $\frac{x-1}{2}$ is monotonic increasing, the maximum point x_{0} of f satisfies $3-\frac{3 \epsilon}{x_{0}}=\frac{x_{0}-1}{2}$, so that $x_{0}=\frac{7+\sqrt{49-24 \epsilon}}{2}$. It follows that $f(x) \leq f\left(x_{0}\right)=\frac{5+\sqrt{49-24 \epsilon}}{4}$. Therefore by Hakimi's theorem, we have

$$
\operatorname{pa}(G)=\max _{S \subseteq V(G),|S| \geq 1}\left\lceil\frac{e(S)}{|S|}\right\rceil \leq \max _{S \subseteq V(G),|S| \geq 1}\lceil f(|S|)\rceil \leq\left\lceil\frac{5+\sqrt{49-24 \epsilon}}{4}\right\rceil,
$$

and so $3 \mathrm{pa}(G)-1 \leq \Delta(G)$. By Theorem 1.5 , we have $\mathrm{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

Even more generally, we can take the advantage of properties for graphs with forbidden minors, noticing that graphs on a fixed surface can be characterized by a finite set of forbidden minors by the Robertson-Seymour theorem. Let G be a graph with no K_{t} as a minor. When $3 \leq t \leq 9$, Mader [14], Jørgensen [12], and Song and Thomas [18] obtained that $|E(G)|<$ $(t-2)|V(G)|$. Clearly, this inequality also holds for any subgraph induced by a vertex set $S \subseteq V(G)$, which implies that $\left\lceil\frac{e(S)}{|S|}\right\rceil \leq t-2$

Again by applying Hakimi's theorem, we have $\mathrm{pa}(G) \leq t-2$. Combining this with Theorem 1.5, we get the following result which generalizes Theorem 2.5 and completely confirms the LAC for graphs with no K_{4} as a minor.

Theorem 2.8. For $t \in\{3,4, \ldots, 9\}$, let G be a graph containing no K_{t} as a minor. If $\Delta(G) \geq$ $3 t-7$, then $\operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

For large positive integer t, Thomason [19] proved that a graph G with no K_{t} as a minor satisfies

$$
|E(G)|<(\alpha+o(1)) t \sqrt{\ln t} \cdot|V(G)|,
$$

where $\alpha=0.319 \ldots$ is an explicit constant and $o(1)$ is a function of t tending to 0 as $t \rightarrow \infty$. It then follows that $\mathrm{pa}(G) \leq(\alpha+o(1)) t \sqrt{\ln t}$. Again by Hakimi's Theorem, we have that $\mathrm{pa}(G) \leq(\alpha+o(1)) t \sqrt{\ln t}$. Therefore, we may generally conclude as follows using Theorem 1.5 .

Theorem 2.9. There exists a constant $\alpha=0.319 \ldots$ such that any graph G containing no K_{t} as a minor with $\Delta(G) \geq(3 \alpha+o(1)) t \sqrt{\ln t}$ satisfies $\operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

3 Proof of Theorem 1.3

We first introduce some notation that will be used in this section. Let G be a simple graph. The complement of G, denoted by \bar{G}, is the graph on the same vertex set $V(G)$ such that two distinct vertices of \bar{G} are adjacent if and only if they are not adjacent in G. For any edge set $E^{*} \subseteq E(G) \cup E(\bar{G})$ regardless whether $E^{*} \subseteq E(G)$ or not, let $G \pm E^{*}$ be the graph obtained from G by adding or deleting all edges belong to E^{*}, and we write $G \pm e$ for $G \pm\{e\}$. Let $\left\langle E^{*}\right\rangle$ be the graph with vertex set $V(G)$ and edge set E^{*}.

Notice that $\left\langle E^{*}\right\rangle$ may have isolated vertices. A matching is a set of edges that share no common vertex. For vertex sets $U, W \subseteq V(G)$, let $E_{G}(U, W)$ denote the set of all edges of G joining a vertex of U with a vertex of W. The subgraph induced by $U \subseteq V(G)$, denoted by $G[U]$, is the subgraph whose vertex set is U and which contains precisely all edges of G with both endvertices in U.

The following technical result, which serves as the foundation of this paper, guarantees Theorem 1.3

Theorem 3.1. Let F be a degree-3 pseudoforest, and let $M^{-} \subseteq \bar{F}$ be a matching. Then, there exists a matching $M_{F} \subseteq F$ such that both $\left\langle M^{-} \cup M_{F}\right\rangle$ and $F-M_{F}$ are linear forests. subgraphs of a graph G. Note that \emptyset is a trivial matching in $\overline{F_{1}}$. Applying Theorem 3.1 with
$F=F_{1}$ and $M^{-}=\emptyset$, there exists a matching $M_{F_{1}} \subseteq F_{1}$ such that both $\left\langle M^{-} \cup M_{F_{1}}\right\rangle$, i.e., $\left\langle M_{F_{1}}\right\rangle$, and $F_{1}-M_{F_{1}}$ are linear forests. Note that $M_{F_{1}} \subseteq \overline{F_{2}}$ since $E\left(F_{1}\right) \cap E\left(F_{2}\right)=\emptyset$. Applying Theorem 3.1 again with $F=F_{2}$ and $M^{-}=M_{F_{1}}$, there exists a matching $M_{F_{2}} \subseteq F_{2}$ such that both $\left\langle M_{F_{1}} \cup M_{F_{2}}\right\rangle$ and $F_{2}-M_{F_{2}}$ are linear forests. Thus, we have found the three edge-disjoint linear forests: $M_{F_{1}} \cup M_{F_{2}}, F_{1}-M_{F_{1}}$ and $F_{2}-M_{F_{2}}$, whose union of edge sets is $E\left(F_{1} \cup F_{2}\right)$.

The remainder is dedicated to the proof of Theorem 3.1. From F, by adding new edges and/or vertices if necessary, there exists a degree- 3 pseudoforest $F^{*} \supseteq F$ such that every component of F^{*} has a cycle and every vertex on the cycle has degree 3 . For a given matching $M^{-} \subseteq \bar{F}$, if Theorem 3.1 holds for F^{*}, then it also holds for F because $F^{*} \supseteq F$ is a degree- 3 pseudoforest and $M^{-}-E\left(F^{*}\right)$ is also a matching in $\overline{F^{*}}$. Therefore, for simplicity, we assume that each component of F has a cycle, and each vertex on the cycle has degree 3 .

Let \mathcal{C} be the set of all cycles in F. Let $V_{c}=\bigcup_{C \in \mathcal{C}} V(C)$. For each $i \geq 0$, let $V_{i}=\{v \in V(F)$: $\left.\operatorname{dist}\left(v, V_{c}\right)=i\right\}$. Trivially, $V_{0}=V_{c}$. Suppose that t is the maximum integer such that $V_{t} \neq \emptyset$, Grammar 7 then obviously, $t \geq 1$. Let $F_{i}=F\left[V_{0} \cup \cdots \cup V_{i}\right]$ for each $i \in[t]$, where $[t]:=\{0, \ldots, t\}$. Clearly, $F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{t}, E\left(F_{i}-F_{i-1}\right)=E_{F}\left(V_{i-1}, V_{i}\right)$ for each $i \neq 0$, and $C \subseteq F_{0}$ for any $C \in \mathcal{C}$. For any $v \in V_{c}$, we notice that v has exactly two neighbors on some cycle in \mathcal{C} and one neighbor in V_{1}. Denote by v^{*} the unique neighbor of v in V_{1}.

Proposition 3.2. There exists a matching $M_{1} \subseteq F_{1}$ such that both $\left\langle M^{-} \cup M_{1}\right\rangle$ and $F_{1}-M_{1}$ are linear forests.

The proof of Proposition 3.2 is more convoluted and is placed in Subsection 3.2 .
Proposition 3.3. There exists a monotonic sequence of matchings $M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{t}$ such that the following three properties hold for each $i \in\{1,2, \ldots, t\}$.
(i) $M_{i} \subseteq F_{i}$;
(ii) $\left\langle M^{-} \cup M_{i}\right\rangle$ is a linear forest; and
(iii) $F_{i}-M_{i}$ is a linear forest.

Since $M_{t} \subseteq F_{t}$ and $F_{t}=F$, the matching M_{t} in Proposition 3.3 is the desired matching M_{F} in Theorem 3.1. We first prove Proposition 3.3 by induction in Subsection 3.1.

3.1 Proof of Proposition 3.3

The existence of M_{1} is guaranteed by Proposition 3.2. Suppose that we have constructed a monotonic sequence of matchings $M_{1} \subseteq \cdots \subseteq M_{i}$ for some $i \in\{1, \ldots, t-1\}$ satisfying properties
\longrightarrow Haw do we know $F_{i+1}-M_{i-1}$ is a linen forest.
(i), (ii) and (iii) in Proposition 3.3. We construct M_{i+1} as follows based on the matching M_{i}.

Let $V_{i, 3}$ be the set of degree 3 vertices in $F_{i+1}-M_{i}$. If $V_{i, 3}=\emptyset$ then $d_{F_{i+1}-M_{i}}(v) \leq 2$ for any $v \in V\left(F_{i}\right)$. Let $M_{i+1}:=M_{i}$. Note that $F_{i+1}=F_{i} \cup E_{F}\left(V_{i}, V_{i+1}\right)$. It is easy to check that the matching M_{i+1} satisfies properties (i), (ii) and (iii) in Proposition 3.3? Suppose now that $V_{i, 3} \neq \emptyset$. We claim that $V_{i, 3} \subseteq V_{i}$. Otherwise, let $v \in V_{i, 3}$ such that $v \in V_{j}$ for some $j \in[i+1] \backslash\{i\}$. If $j=i+1$ then $d_{F_{i+1}}(v)=1$, and so $d_{F_{i+1}-M_{i}}(v) \leq 1$; if $j \in[i-1]$, then $d_{F_{i+1}-M_{i}}(v)=d_{F_{i}-M_{i}}(v) \leq 2$. We reach a contradiction in either case. Let $V_{i, 3}=\left\{v_{1}, \ldots, v_{s}\right\}$. Since $V_{i, 3} \subseteq V_{i}$ and $i \geq 1$, each $v_{h} \in V_{i, 3}$ has a unique neighbor in V_{i-1}, say u_{h}, and exactly two neighbors in V_{i+1}, say w_{h}, w_{h}^{\prime}. Moreover, $w_{1}, w_{1}^{\prime}, \ldots, w_{s}, w_{s}^{\prime}$ are distinct. Since F is a degree- 3 for convention. u_{h}
Claim 3.4. For each $h \in\left\{0,1, \ldots, \hat{s}^{\dagger}\right\}$, there exists a matching $M_{i, h} \subseteq F_{i, h}$ such that $\left\langle M^{-} \cup M_{i, h}\right\rangle$ and $F_{i, h}-M_{i, h}$ are linear forests.

Proof. Clearly, Claim 3.4 holds for $h=0$ since we can let $M_{i, 0}=M_{i}$. Suppose $h \geq 1$ and we have the desired matching $M_{i, h-1}$ such that $\left\langle M^{-} \cup M_{i, h-1}\right\rangle$ and $F_{i, h-1}-M_{i, h-1}$ are linear forests. By definition, $M_{i, h-1}$ does not contain any edges incident to vertex v_{h}. Consequently, all of v_{h}, w_{h} and w_{h}^{\prime} have degree at most 1 in $\left\langle M^{-} \cup M_{i, h-1}\right\rangle$, which in turn implies that each of v_{h}, w_{h} and w_{h}^{\prime} is either an isolated vertex or an endvertex of a path component of $\left\langle M^{-} \cup M_{i, h-1}\right\rangle$. Hence, not all of v_{h}, w_{h} and w_{h}^{\prime} are in the same component of $\left\langle M^{-} \cup M_{i, h-1}\right\rangle$. We may assume without loss of generality that v_{h} and w_{h} are in different path components of $\left\langle M^{-} \cup M_{i, h-1}\right\rangle$, and we let $M_{i, h}=M_{i, h-1} \cup\left\{v_{h} w_{h}\right\}$. Clearly, $M_{i, h} \subseteq F_{i, h}$ and $M_{i, h}$ is a matching. Moreover, adding edge $v_{h} w_{h}$ to $\left\langle M^{-} \cup M_{i, h-1}\right\rangle$ does not create a cycle but combines two path components into a new path component. Therefore, both $\left\langle M^{-} \cup M_{i, h}\right\rangle$ and $F_{i, h}-M_{i, h}$ are linear forests.

Applying Claim 3.4 with $h=s$ and letting $M_{i+1}=M_{i, s}$, we thus find a matching $M_{i+1} \subseteq F_{i+1}$ such that $\left\langle M^{-} \cup M_{i+1}\right\rangle$ and $F_{i, s}-M_{i+1}$ are linear forests, and so $F_{i+1}-M_{i+1}$ is also a linear forest. This completes the proof of Proposition 3.3.

3.2 Proof of Proposition 3.2

Let M be a matching of F_{1} and $u v$ be an edge of some cycle from \mathcal{C}. $\underbrace{\text { Denote by } E_{F_{1}}(u) \text { and }}$ $E_{F_{1}}(v)$ the sets of three edges incident to u and v in F_{1}, respectively. Recall that u^{*} and v^{*} are the unique neighbors of u and v, respectively. Then, $\left\{u u^{*}, u v\right\} \subseteq E_{F_{1}}(u)$ and $\left\{v v^{*}, u v\right\} \subseteq E_{F_{1}}(v)$. If $M \cap\left(E_{F_{1}}(u) \cup E_{F_{1}}(v)\right) \subseteq\left\{u u^{*}, v v^{*}\right\}$, then we define the uv-switch w.r.t. M as the following operation: $M \longrightarrow M^{*}$, where $M^{*}:=M+u v-u u^{*}-v v^{*}$. Clearly, M^{*} is still a matching of F_{1}.

Claim 3.5. Let uv be an edge of a cycle in \mathcal{C}, and M be a matching of F_{1} such that $M \cap\left(E_{F_{1}}(u) \cup\right.$ $\left.E_{F_{1}}(v)\right) \subseteq\left\{u u^{*}, v v^{*}\right\}$. If u and v are in two different components D_{u}, D_{v} of $\left\langle M^{-} \cup M\right\rangle$, then after the uv-switch w.r.t. M, the union of D_{u} and D_{v} becomes a disjoint union of paths and all other components of $\left\langle M^{-} \cup M\right\rangle$ are unchanged.

Proof. Note that each component of $\left\langle M^{-} \cup M\right\rangle$ is either a path or an even cycle, and so are D_{u} and D_{v}. Since $M \cap E_{F_{1}}(u) \subseteq\left\{u u^{*}\right\}$, regardless whether $u u^{*} \in D_{u}$ or not, $D_{u}-u u^{*}$ is either a path or a disjoint union of paths with u being an endvertex of a path. If $u u^{*} \notin D_{u}$, then $u u^{*} \notin M$, and so $E_{F_{1}}(u) \cap M=\emptyset$, which implies that D_{u} must be a path. Hence, $D_{u}-u u^{*}$ is either a single path or a disjoint union of paths with u being an endvertex of some path. The similar statement holds for $D_{v}-v v^{*}$. Hence, $D_{u} \cup D_{v}-u u^{*}-v v^{*}+u v$ is a disjoint union of paths. For any component D of $\left\langle M^{-} \cup M\right\rangle$, if $D \notin\left\{D_{u}, D_{v}\right\}$, by definition we have $E(D) \cap\left\{u u^{*}, v v^{*}, u v\right\}=\emptyset$ and $V(D) \cap\{u, v\}=\emptyset$, and so $D-u u^{*}-v v^{*}+u v$ are unchanged.

For a matching M of F_{1}, a cycle $C \in \mathcal{C}$ is said to be M-good if $E(C) \cap M \neq \emptyset$ and each component of $\left\langle M^{-} \cup M\right\rangle$ sharing a common vertex with C is a path. Otherwise, C is said to be M-bad, i.e., $E(C) \cap M=\emptyset$ or there is a cycle component D of $\left\langle M^{-} \cup M\right\rangle$ such that $V(D) \cap V(C) \neq \emptyset$. A matching M of F_{1} is called a feasible matching if it satisfies
(i) $\Delta\left(F_{1}-M\right) \leq 2$; and
(ii) $E(C) \cap M=\emptyset$ for every M-bad cycle C.

We notice that under the condition (i), the condition (ii) is equivalent to that $M \cap E_{F_{1}}(u)=\left\{u u^{*}\right\}$ for every $u \in V(C)$ whenever C is M-bad. And so we can conduct a $u v$-switch w.r.t. M for every $u v \in E(C)$ whenever C is M-bad.

We start with the matching $I:=\left\{v v^{*}: v \in V_{c}\right\}$. Then, $\Delta\left(F_{1}-M\right)=2$ and $E(C) \cap M=\emptyset$ for every cycle $C \in \mathcal{C}$. By definition, every cycle of \mathcal{C} is M-bad. Hence, M is a feasible matching, and so the set of feasible matchings is not empty. For any two feasible matchings M_{a} and M_{b} in F_{1}, we write $M_{a} \prec M_{b}$ if every M_{a}-good cycle is M_{b}-good but not every M_{b}-good cycle is M_{a}-good. Clearly, all feasible matchings under the order \prec form a poset. Let M_{1} be a maximal element in this poset.

Proposition 3.6. All cycles in F_{1} are $M_{1-g o o d . ~}^{\text {- }}$.

Suppose that Proposition 3.6 holds. Then, $E(C) \cap M_{1} \neq \emptyset$ for any cycle C in F_{1}, and so $F_{1}-M_{1}$ is acyclic. Since M_{1} is a feasible matching, $\Delta\left(F_{1}-M_{1}\right) \leq 2$. Hence, $F_{1}-M_{1}$ is a linear forest. Let D be a nontrivial component of $\left\langle M^{-} \cup M_{1}\right\rangle$. Notice that $\left\langle M^{-} \cup M_{1}\right\rangle$ is a disjoint union of paths and cycles. We claim that D is a path. Recall that V_{c} is the set of vertices of
all cycles in F. If $V(D) \cap V_{c} \neq \emptyset$, then D is a path because all cycles in F_{1} are M_{1}-good. If $V(D) \cap V_{c}=\emptyset$, then $E(D) \cap M_{1}=\emptyset$ because every edge of $M_{1} \subseteq E\left(F_{1}\right)$ is incident to some vertex in V_{c}. Hence, D is a single edge of M^{-}, and so D is also a path. Accordingly, $\left\langle M^{-} \cup M_{1}\right\rangle$ is a disjoint union of paths, which also shows that $\left\langle M^{-} \cup M_{1}\right\rangle$ is a linear forest. So far, we have completed the proof of Proposition 3.2 under Proposition 3.6. The remainder is devoted to the proof of Proposition 3.6. We assume that there is an M_{1}-bad cycle and will reach a contradiction to complete the proof. cycle, we denote an orientation of D by ${\prec_{D}}$ as if D is a directed path or cycle For a vertex $v \in V(D)$, let v^{-}, v^{+}denote the predecessor and successor of v along the orientation \prec_{D} if they exist. For any $u, v \in V(D)$, denote by $D[u, v]$ the subpath of D from u to v along the orientation \prec_{D}, and denote by $D^{-}[u, v]$ the subpath of D from u to v along the reversed orientation of \prec_{D}. A chord is an edge that is not part of a cycle (resp. path) but connects two vertices of a cycle (resp. path). Two chords $x y$ and $z w$ of D are crossing if exactly one of z and w, say z, is such that $x \prec_{D} z \prec_{D} y$. Let $C \subseteq F_{1}$ be an M_{1}-bad cycle. Suppose that there is an edge $u v \in E(C)$ with endvertices $u, v \in V(D)$. Since M_{1} is a feasible matching, we have $M_{1} \cap\left(E_{F_{1}}(u) \cup E_{F_{1}}(v)\right)=\left\{u u^{*}, v v^{*}\right\}$, and so $u u^{*}, v v^{*} \in E(D), u v \notin E(D)$. We call such $u v$ a bad-cycle-chord (b-chord) of D. When D is a cycle, we say that $u v$ is a consistent b-chord if either $u^{+}=u^{*}$ and $v^{-}=v^{*}$, or $u^{-}=u^{*}$ and $v^{+}=v^{*}$. When D is a path, we assume $u \prec_{D} v$, and say that $u v$ is a consistent b-chord if $u^{-}=u^{*}$ and $v^{+}=v^{*}$. Otherwise, we call $u v$ an inconsistent b-chord.

Claim 3.7. Let D be a nontrivial component of $\left\langle M^{-} \cup M_{1}\right\rangle$. Then, the following statements hold.
(i) For any M_{1}-bad cycle C_{1}, if $V\left(C_{1}\right) \subseteq V(D)$, then every edge of $E\left(C_{1}\right)$ is a consistent b-chord of D.
(ii) For any two M_{1}-bad cycles C_{1} and C_{2}, if $V\left(C_{1}\right) \cup V\left(C_{2}\right) \subseteq V(D)$, then no two edges of $E\left(C_{1}\right) \cup E\left(C_{2}\right)$ form a pair of crossing b-chords of D.

Proof. For (i): Suppose on the contrary that there is an edge $e=u v \in E\left(C_{1}\right)$ that is an inconsistent b-chord of D. When D is a path, we assume that x, y are the two endvertices of D and $x \prec_{D} u \prec_{D} v \prec_{D} y$. By symmetry, it suffices to consider the following three cases: (1) $u^{+}=u^{*}$ and $v^{+}=v^{*}$ when D is a path (Figure Ia); (2) $u^{+}=u^{*}$ and $v^{-}=v^{*}$ when D is a path (Figure Ib); or (3) $u^{+}=u^{*}$ and $v^{+}=v^{*}$ when D is a cycle (Figure Ic). In any of these cases, after conducting a $u v$-switch w.r.t. M_{1}, the only changed component D containing $V\left(C_{1}\right)$ becomes the union of paths D^{*} in $\left\langle M^{-} \cup M_{1}^{*}\right\rangle$, where $M_{1}^{*}:=M_{1}+u v-u u^{*}-v v^{*}$ and $D^{*}:=D+u v-u u^{*}-v v^{*}$.

More precisely, D^{*} consists of two paths in case (1): $D[x, u] u v D^{-}\left[v, u^{*}\right]$ and $D\left[v^{*}, y\right] ; D^{*}$ consists of two paths in case (2): $D[x, u] u v D[v, y]$ and $D\left[u^{*}, v^{*}\right] ; D^{*}=D\left[u^{*}, v\right] v u D^{-}\left[u, v^{*}\right]$ is a path in case (3). Combining this with $E\left(C^{*}\right) \cap M_{1}^{*}=E\left(C^{*}\right) \cap M_{1}$ for any $C^{*} \in \mathcal{C} \backslash\left\{C_{1}\right\}$, we have the following two results: C^{*} is M_{1}^{*}-good if C^{*} is M_{1}-good; C^{*} is M_{1}-bad if C^{*} is M_{1}^{*}-bad. Since M_{1} is feasible matching, $\Delta\left(F_{1}-M_{1}\right) \leq 2$ and $E\left(C^{*}\right) \cap M_{1}=\emptyset$ if C^{*} is M_{1}-bad. So $\Delta\left(F_{1}-M_{1}^{*}\right)=\Delta\left(F_{1}-M_{1}-u v+u u^{*}+v v^{*}\right) \leq 2$ and $E\left(C^{*}\right) \cap M_{1}^{*}=\emptyset$ if C^{*} is M_{1}^{*}-bad. Hence, M_{1}^{*} is a feasible matching with $M_{1} \prec M_{1}^{*}$. Since $V\left(D^{*}\right)=V(D)$, we have $V\left(C_{1}\right) \subseteq V\left(D^{*}\right)$, and so each component of $\left\langle M^{-} \cup M_{1}^{*}\right\rangle$ sharing a common vertex with C_{1} is a path. Combining this with $u v \in E\left(C_{1}\right) \cap M_{1}^{*}$, we conclude that C_{1} is M_{1}^{*}-good, which gives a contradiction to the maximality of M_{1}.

Figure 1: Inconsistent b-chords of D
For (ii): Suppose on the contrary that there are two crossing b-chords $e_{1}=u_{1} v_{1} \in E\left(C_{1}\right)$ and $e_{2}=u_{2} v_{2} \in E\left(C_{2}\right)$. We further assume that $C_{1}=C_{2}$ if e_{1}, e_{2} are on the same cycle. After conducting the $u_{1} v_{1}$-switch and the $u_{2} v_{2}$-switch, let

$$
\begin{aligned}
M_{1}^{*} & :=M_{1}+u_{1} v_{1}+u_{2} v_{2}-u_{1} u_{1}^{*}-v_{1} v_{1}^{*}-u_{2} u_{2}^{*}-v_{2} v_{2}^{*} \\
D^{*} & :=D+u_{1} v_{1}+u_{2} v_{2}-u_{1} u_{1}^{*}-v_{1} v_{1}^{*}-u_{2} u_{2}^{*}-v_{2} v_{2}^{*}
\end{aligned}
$$

Suppose that D is a cycle, and without loss of generality, that $u_{1} \prec_{D} u_{2} \prec_{D} v_{1} \prec_{D} v_{2}$. By (i), both $u_{1} v_{1}$ and $u_{2} v_{2}$ are consistent b-chords of D. By symmetry, we assume that $u_{1}^{+}=u_{1}^{*}$ and $v_{1}^{-}=v_{1}^{*}$, and consider the following two possible cases: (1) $u_{2}^{+}=u_{2}^{*}$ and $v_{2}^{-}=v_{2}^{*}$ (Figure 2a); or (2) $u_{2}^{-}=u_{2}^{*}$ and $v_{2}^{+}=v_{2}^{*}$ (Figure 2b). In case (1), D^{*} is a union of two paths: $D\left[u_{2}^{*}, v_{1}^{*}\right]$ and $D\left[u_{1}^{*}, u_{2}\right] u_{2} v_{2} D\left[v_{2}, u_{1}\right] u_{1} v_{1} D\left[v_{1}, v_{2}^{*}\right]$. In case (2), D^{*} is also a union of two paths: $D\left[u_{1}^{*}, u_{2}^{*}\right]$ and $D^{-}\left[v_{1}^{*}, u_{2}\right] u_{2} v_{2} D^{-}\left[v_{2}, v_{1}\right] v_{1} u_{1} D^{-}\left[u_{1}, v_{2}^{*}\right]$. Similarly to the discussion in Claim 3.7.(i), we have that $M_{1} \prec M_{1}^{*}$ and M_{1}-bad cycle C_{1} becomes M_{1}^{*}-good, giving a contradiction to the maximality of M_{1}.

We now assume that D is a path. Let x, y be two endvertices of D. We assume without loss of generality that $x \prec_{D} u_{1} \prec_{D} u_{2} \prec_{D} v_{1} \prec_{D} v_{2} \prec_{D} y$. Since both $u_{1} v_{1}$ and $u_{2} v_{2}$ are consistent w.r.t. D, we have $u_{1}^{-}=u_{1}^{*}, v_{1}^{+}=v_{1}^{*}, u_{2}^{-}=u_{2}^{*}$ and $v_{2}^{+}=v_{2}^{*}$ (Figure 2c). We see that D^{*} is a union of three disjoint paths: $D\left[x, u_{1}^{*}\right], D\left[v_{2}^{*}, y\right]$, and $D^{-}\left[u_{2}^{*}, u_{1}\right] u_{1} v_{1} D^{-}\left[v_{1}, u_{2}\right] u_{2} v_{2} D^{-}\left[v_{2}, v_{1}^{*}\right]$.

Figure 2: Crossing b-chords of D

Similarly to the discussion in Claim 3.7.(i), we have that $M_{1} \prec M_{1}^{*}$ and the M_{1}-bad cycles C_{1}, C_{2} become M_{1}^{*}-good, giving a contradiction to the maximality of M_{1}.

A cycle component D of $\left\langle M^{-} \cup M_{1}\right\rangle$ is called a black hole if $V(C) \subseteq V(D)$ for any cycle $C \in \mathcal{C}$ satisfying $V(C) \cap V(D) \neq \emptyset$ with at most one exception $|V(C) \cap V(D)|=1$. Since we assumed that D is a cycle in the above definition, every cycle sharing a vertex with a black hole is M_{1}-bad.

Claim 3.8. There is no black hole in $\left\langle M^{-} \cup M_{1}\right\rangle$.

Proof. Suppose on the contrary that there is a black hole D in $\left\langle M^{-} \cup M_{1}\right\rangle$. Let C_{0} denote the only possible cycle that shares exactly one vertex with D, and let \mathcal{B}^{*} denote the set of cycles $C^{*} \in \mathcal{C}$ such that $V\left(C^{*}\right) \subseteq V(D)$. Since D is a cycle component of $\left\langle M^{-} \cup M_{1}\right\rangle$, it follows that D contains at least two edges of M_{1}, i.e., $\left|E(D) \cap M_{1}\right| \geq 2$. Since $M_{1} \subseteq F_{1}$ and $F_{1}=F\left[V_{c} \cup V_{1}\right]$, we have $\left|V(D) \cap V_{c}\right| \geq 2$ which in turn shows $\mathcal{B}^{*} \neq \emptyset$.

Let $E\left(\mathcal{B}^{*}\right):=\cup_{C^{*} \in \mathcal{B}^{*}} E\left(C^{*}\right)$. We define an auxiliary graph G with $V(G)=V(D)$ and $E(G)=E(D) \cup E\left(\mathcal{B}^{*}\right)$. Recall that every cycle sharing a vertex with a black hole is M_{1}-bad. Since M_{1} is feasible matching, every edge in $E\left(\mathcal{B}^{*}\right)$ is a b-chord of D. By Claim 3.7.(ii), no two edges of $E\left(\mathcal{B}^{*}\right)$ are crossing w.r.t. D. Hence, G can be drawn on the plane as an outerplanar graph, where D is the boundary and all edges in $E\left(\mathcal{B}^{*}\right)$ are chords of G (Figure 3).

If C_{0} exists, then let v_{0} be the unique vertex in $V\left(C_{0}\right) \cap V(D)$, otherwise, let v_{0} be an arbitrary vertex not incident to any $e \in E\left(\mathcal{B}^{*}\right)$, which exists by outerplanarity Each edge $e \in E\left(\mathcal{B}^{*}\right)$ divides the interior region of D into two parts: R_{e}^{1} whose closure contains v_{0}, and R_{e}^{0}

Figure 3: An illustration of the outerplanar graph G
whose closure does not contain v_{0}. Of all edges on $E\left(\mathcal{B}^{*}\right)$, let e_{1} be one such that $R_{e_{1}}^{1}$ contains most number of cycles in \mathcal{B}^{*}, and let $C_{1} \in \mathcal{B}^{*}$ be the cycle containing e_{1}. We claim that for any edge $e \in E\left(C_{1}\right), R_{e}^{0}$ contains no cycle in \mathcal{B}^{*} other than C_{1} itself. Otherwise, we suppose that there exists some edge $e_{2} \in E\left(C_{1}\right)$ such that $R_{e_{2}}^{0}$ contains another cycle $C_{2} \in \mathcal{B}^{*}$ other than C_{1} itself. Then, for any edge $e_{3} \in C_{2}, R_{e_{3}}^{1}$ contains more cycles than $R_{e_{1}}^{1}$, giving a contradiction.

Since C_{1} has at least three edges, C_{1} contains two consecutive edges $x y$ and $y z$ such that both $R_{x y}^{0}$ and $R_{y z}^{0}$ contain no cycles of \mathcal{B}^{*}. Assume without loss generality that $x \prec_{D} y \prec_{D} z$. Since M_{1} is feasible and C_{1} is M_{1}-bad, we have $M_{1} \cap E_{F_{1}}(u)=\left\{u u^{*}\right\}$ for every $u \in V\left(C_{1}\right)$, and so $x x^{*}, y y^{*}, z z^{*} \in E(D)$. By Claim 3.7(i), both $x y$ and $y z$ are consistent. Then, either $x^{-}=x^{*}$ and $y^{+}=y^{*}$, or $x^{+}=x^{*}$ and $y^{-}=y^{*}$. Suppose first that $x^{-}=x^{*}$ and $y^{+}=y^{*}$. Recall that $x x^{*}, y y^{*} \in M_{1}$. Since D is a component of $\left\langle M^{-} \cup M_{1}\right\rangle$, we have that $x x^{+}, y y^{-} \in M^{-}$. Since $x y$ is a chord of D, it follows that $x^{+} \neq y$, and so $x x^{+} \neq y y^{-}$. Hence, $D\left[x^{+}, y^{-}\right]$contains at least one edge of M_{1}, which in turn shows that it intersects with some cycle in \mathcal{C}. Therefore, there is a cycle of \mathcal{B}^{*} in $R_{x y}^{0}$, giving a contradiction. We now suppose that $x^{+}=x^{*}$ and $y^{-}=y^{*}$. Then, $z^{+}=z^{*}$. In the same fashion above, we can show that $R_{y z}^{0}$ contains a cycle of \mathcal{B}^{*}, giving a contradiction.

Claim 3.9. If D is a path component in $\left\langle M^{-} \cup M_{1}\right\rangle$, then $V(C) \backslash V(D) \neq \emptyset$ for any M_{1}-bad cycle C.

Proof. Suppose on the contrary that there exists an M_{1}-bad cycle C such that $V(C) \subseteq V(D)$. By Claim 3.7(ii), no two edges of C are crossing b-chords w.r.t. D. Note that C has at least three edges. Thus there are two consecutive edges $u v, v w \in E(C)$ such that $u \prec_{D} v \prec_{D} w$. By Claim 3.7(i), both $u v$ and $v w$ are consistent w.r.t. D. However, when $u v$ is consistent, we have $u^{-}=u^{*}$ and $v^{+}=v^{*}$, which implies that $v w$ is not consistent, giving a contradiction.

A cycle $C \in \mathcal{C}$ is a single-point-unchangeable (SPU) if the following is true: for any component
D in $\left\langle M^{-} \cup M_{1}\right\rangle$, if $V(D) \cap V(C) \neq \emptyset$ then D is a cycle and $|V(D) \cap V(C)|=1$, i.e., components of $\left\langle M^{-} \cup M_{1}\right\rangle$ sharing a common vertex with C are cycles, and each of them shares exactly one vertex of C.

Claim 3.10. If an M_{1}-bad cycle C intersects with at least two components of $\left\langle M^{-} \cup M_{1}\right\rangle$, then C is an SPU.

Proof. Suppose on the contrary that C is not an SPU. Let $C=u_{0} u_{1} \cdots u_{s} u_{0}$, and for convention, let $u_{s+1}=u_{0}$. Since C is an M_{1}-bad cycle and M_{1} is a feasible matching, $M_{1} \cap E_{F_{1}}\left(u_{i}\right)=$ $\left\{u_{i} u_{i}^{*}\right\}$ for each $i \in\{0, \ldots, s\}$ and the $u_{i} u_{i+1}$-switch can be conducted. We will identify a set of independent edges $u_{i} u_{i+1}$ for $i \in\{1, \ldots, s\}$, and then do $u_{i} u_{i+1}$-switches for all these edges to get a feasible matching M_{1}^{*} such that $M_{1} \prec M_{1}^{*}$ and C is M_{1}^{*}-good cycle, giving a contradiction to the maximality of M_{1}. Let \mathcal{D} be the set of all components of $\left\langle M^{-} \cup M_{1}\right\rangle$ sharing at least one vertex with C. By assumption, we have $|\mathcal{D}| \geq 2$.

We first consider the case that all components in \mathcal{D} are paths. Since $|\mathcal{D}| \geq 2$, we may assume that u_{0} and u_{1} are contained in two different path components $D_{0}, D_{1} \in \mathcal{D}$. We do $u_{0} u_{1}$-switch and let $M_{1}^{*}=M_{1}+u_{0} u_{1}-u_{0} u_{0}^{*}-u_{1} u_{1}^{*}$. By Claim 3.5, every component of $\left\langle M^{-} \cup M_{1}^{*}\right\rangle$ sharing a vertex with C is still a path, while after the switch, C is M_{1}^{*}-good since $E(C) \cap M_{1}^{*}=\left\{u_{0} u_{1}\right\}$. For any M_{1}-good cycle $C^{*} \in \mathcal{C} \backslash\{C\}, C^{*}$ is M_{1}^{*}-good since $E\left(C^{*}\right) \cap M_{1}^{*}=E\left(C^{*}\right) \cap M_{1}$. Moreover, since the $u_{0} u_{1}$-switch changes no other M_{1}-bad cycles, it is easy to check that M_{1}^{*} is a feasible matching, and therefore, $M_{1} \prec M_{1}^{*}$. This contradicts to the maximality of M_{1}.

Suppose now that there exists one cycle component in \mathcal{D}. Denote by \mathcal{D}_{C} the set of all cycle components in \mathcal{D}. Since C is not an $\operatorname{SPU}, \mathcal{D}$ either contains a path, or contains a cycle that shares at least two vertices with C. So, we assume that $D_{0} \in \mathcal{D}$ is a path if there is one, otherwise is a cycle satisfying $\left|V\left(D_{0}\right) \cap V(C)\right| \geq 2$. In both cases, we assume that $u_{0} \in V\left(D_{0}\right)$ and $u_{s} \notin V\left(D_{0}\right)$ because C intersects at least two components in \mathcal{D}.

We claim that there exists some index $i \in\{1, \ldots, s\}$ such that u_{i} belongs to a cycle component and u_{i+1} belongs to a different component which may be a path or a cycle. If D_{0} is a path, then such i exists and $1 \leq i \leq s$ because of $\mathcal{D}_{C} \neq \emptyset$ and $u_{s} \notin V\left(D_{0}\right)$; if D_{0} is a cycle, then such i exists and $1 \leq i \leq s-1$ because of $\left|V\left(D_{0}\right) \cap V(C)\right| \geq 2$ and $u_{s} \notin V\left(D_{0}\right)$. Let i_{1} be the smallest index with above property.

Suppose that we have picked vertices $u_{i_{1}}, \ldots, u_{i_{t}}$ for $t \geq 1$ with above property. For each $j \in\{1, \ldots, t\}$, we denote the corresponding cycle component that $u_{i_{j}}$ belongs to by D_{j} and the cycle or path component that $u_{i_{j}+1}$ belongs to by D_{i}^{*}. If $\mathcal{D}_{C} \backslash\left\{D_{1}, D_{1}^{*}, \ldots, D_{t}, D_{t}^{*}\right\}=\emptyset$, then we stop. Otherwise, let i_{t+1} be the smallest index in $\left\{i_{t}+2, \ldots, s\right\}$ such that $u_{i_{t+1}}$ is on a cycle component in $\mathcal{D}_{C} \backslash\left\{D_{1}, \ldots, D_{t}\right\}$ and $u_{i_{t+1}+1}$ belongs to a different component. We assume
without loss of generality that $u_{i_{t+1}} \in V\left(D_{t+1}\right)$ and $u_{i_{t+1}+1} \in V\left(D_{t+1}^{*}\right)$. Assume this process terminates at $u_{i_{\ell}}$. Then, $\left\{D_{1}, D_{1}^{*}, \ldots, D_{\ell}, D_{\ell}^{*}\right\} \supseteq \mathcal{D}_{C}$ and the cycles D_{1}, \ldots, D_{ℓ} are mutually distinct. Recall that $1 \leq i_{\ell} \leq s$, and so edges set $\left\{u_{i_{j}} u_{i_{j}+1}: 1 \leq j \leq \ell\right\}$ are independent.

We do $u_{i_{1}} u_{i_{1}+1}$-switch, $\ldots, u_{i_{\ell}} u_{i_{\ell}+1}$-switch w.r.t. M_{1} and let $M_{1}^{*}:=M_{1}-\bigcup_{j=1}^{\ell}\left\{u_{i_{j}} u_{i_{j}}^{*}, u_{i_{j}+1} u_{i_{j}+1}^{*}\right\}$ $+\bigcup_{j=1}^{\ell}\left\{u_{i_{j}} u_{i_{j}+1}\right\}$. Since edges set $\left\{u_{i_{j}} u_{i_{j}+1}: 1 \leq j \leq \ell\right\}$ are independent and $M_{1} \cap\left(E_{F_{1}}\left(u_{i_{j}}\right) \cup \mathfrak{q}\right.$ cht of $E_{F_{1}}\left(u_{i_{j}+1}\right)=\left\{u_{i_{j}} u_{i_{j}}^{*}, u_{i_{j}+1} u_{i_{j}+1}^{*}\right\}$, we have that M_{1}^{*} is a matching of F_{1}. By applying Claim 3.5 Spue. repeatedly, we see that the subgraph of $\left\langle M^{-} \cup M_{1}^{*}\right\rangle$ induced by $\bigcup_{j=1}^{\ell}\left(V\left(D_{i_{j}}\right) \cup V\left(D_{i_{j}}^{*}\right)\right)$ is a disjoint union of paths. So, all components in $\left\langle M^{-} \cup M_{1}^{*}\right\rangle$ intersecting with C are paths. Combining this with $\bigcup_{j=1}^{\ell}\left\{u_{i_{j}} u_{i_{j}+1}\right\} \subseteq E(C) \cap M_{1}^{*}$, we have that C is M_{1}^{*}-good. Note that $E\left(C^{*}\right) \cap M_{1}^{*}=E\left(C^{*}\right) \cap M_{1}$ for any cycle $C^{*} \in \mathcal{C} \backslash\{C\}$. Similarly to the discussion in the first case, we can verify that M_{1}^{*} is feasible matching with $M_{1} \prec M_{1}^{*}$, giving a contradiction to the maximality of M_{1}.

Now we are ready to complete the proof of Proposition 3.6 that all cycles in F_{1} are M_{1}-good.
Proof of Proposition 3.6. Suppose on the contrary that there exists some M_{1}-bad cycles in F_{1}. Let \mathcal{B} be the set of all M_{1}-bad cycles in F_{1}. Let

$$
\begin{aligned}
& \mathcal{B}_{1}=\{C \in \mathcal{B}: C \text { is an } \mathrm{SPU}\}, \text { and } \\
& \mathcal{B}_{2}=\left\{C \in \mathcal{B}: V(C) \subseteq V(D) \text { for some component } D \text { of }\left\langle M^{-} \cup M_{1}\right\rangle\right\} .
\end{aligned}
$$

By Claim 3.10, we have $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ and $\mathcal{B}_{1} \cap \mathcal{B}_{2}=\emptyset$. By assumption, $\mathcal{B} \neq \emptyset$. We now consider the following cases on whether $\mathcal{B}_{1}=\emptyset$ or not.

Case 1: $\mathcal{B}_{1}=\emptyset$. In this case, $\mathcal{B}_{2}=\mathcal{B} \neq \emptyset$. Let $C \in \mathcal{B}_{2}$ and D be the component of $\left\langle M^{-} \cup M_{1}\right\rangle$ such that $V(C) \subseteq V(D)$. By Claim 3.9, we see that D is a cycle. By definition, any cycle $C^{*} \in \mathcal{C}$ having nonempty intersection with D is M_{1}-bad, i.e., $C^{*} \in \mathcal{B}$. And so $C^{*} \in \mathcal{B}_{2}$ because of $\mathcal{B}_{1}=\emptyset$, which in turn implies that $V\left(C^{*}\right) \subseteq V(D)$. Hence, D is a black hole, giving a contradiction to Claim 3.8.

Case 2: $\mathcal{B}_{1} \neq \emptyset$. Define an auxiliary multi-hypergraph H with $V(H)=\mathcal{B}_{1}$; and for each component D of $\left\langle M^{-} \cup M_{1}\right\rangle$ intersecting with at least two SPUs, we define an edge E_{D} of H by $E_{D}=\left\{C \in \mathcal{B}_{1}: V(C) \cap V(D) \neq \emptyset\right\}$. A Berge cycle of length ℓ in a hypergraph is a set of ℓ distinct vertices $\left\{v_{1}, \ldots, v_{\ell}\right\}$ and ℓ distinct edges $\left\{e_{1}, \ldots, e_{\ell}\right\}$ such that $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$.

We claim that H contains a Berge cycle. Suppose on the contrary that H does not contain a Berge cycle. Then, there exists some vertex $C \in V(H)$ such that $d_{H}(C) \leq 1$, i.e., there exists at most one component of $\left\langle M^{-} \cup M_{1}\right\rangle$ that intersects C and another SPU. Denote such a component by D_{0} if exists. Note that $\left|V(C) \cap V\left(D_{0}\right)\right|=1$. Since $M_{1} \cap E_{F_{1}}(v)=\left\{v v^{*}\right\}$ for any $v \in V(C)$, there exists another component, say D, of $\left\langle M^{-} \cup M_{1}\right\rangle$ intersecting with C. Since C
is an SPU, it follows that $|V(C) \cap V(D)|=1$ and D is a cycle. Hence, for any $C^{*} \in \mathcal{B} \backslash\{C\}$, if $V\left(C^{*}\right) \cap V(D) \neq \emptyset$ then C^{*} is M_{1}-bad. If $C^{*} \in \mathcal{B}_{1}$, then E_{D} is an edge of H by definition, which in turn shows $d_{H}(C) \geq 2$, giving a contradiction. Thus, $C^{*} \in \mathcal{B}_{2}$, which in turn gives $V\left(C^{*}\right) \subseteq V(D)$. Therefore, D is a black hole, giving a contradiction to Claim 3.8.

Let $B=C_{1} C_{2} \cdots C_{m} C_{1}$ be a Berge cycle of length m in H, and let $E_{D_{1}}, \ldots, E_{D_{m}}$ be the edges in $E(H)$ such that $\left\{C_{i}, C_{i+1}\right\} \subseteq E_{D_{i}}$ for $i \in\{1, \ldots, m\}$ where $C_{m+1}=C_{1}$. Since both C_{i} and C_{i+1} are SPUs, we have that D_{i} is a cycle and $\left|V\left(C_{i}\right) \cap V\left(D_{i}\right)\right|=\left|V\left(C_{i+1}\right) \cap V\left(D_{i}\right)\right|=1$. Let $v_{i} \in V\left(C_{i}\right) \cap V\left(D_{i}\right)$ and $w_{i} \in V\left(C_{i+1}\right) \cap V\left(D_{i}\right)$. Then, $v_{1}, w_{1}, \ldots, v_{m}, w_{m}$ are distinct vertices.

Let $C_{1}=v_{1} x_{1} \ldots x_{t} v_{1}$. For each vertex x_{i}, let $D_{x_{i}}$ be the component of $\left\langle M^{-} \cup M_{1}\right\rangle$ containing
 By Claim 3.5, every component of $\left\langle M^{-} \cup M_{1,1}\right\rangle$ sharing a vertex with C_{1} is a path except for D_{1}. If t is odd, we do $v_{1} x_{1}$-switch, $\ldots, x_{t-1} x_{t}$-switch w.r.t. M_{1} and let $M_{1,1}=M_{1}+$ $\left\{v_{1} x_{1}, x_{2} x_{3}, \ldots, x_{t-1} x_{t}\right\}-\left\{v_{1} v_{1}^{*}\right\}-\bigcup_{i=1}^{t}\left\{x_{i} x_{i}^{*}\right\}$. By Claim 3.5. every component of $\left\langle M^{-} \cup M_{1,1}\right\rangle$ sharing a vertex with C_{1} is a path. For both parities of t, since $w_{m} \in V\left(C_{1}\right)=V\left(C_{m+1}\right)$ and $w_{m} \neq v_{1}$, it follows that the cycle component D_{m} become a path component of $\left\langle M^{-} \cup M_{1,1}\right\rangle$.

Let $C_{2}=v_{2} y_{1} \ldots y_{s} v_{2}$. Similarly to the discussion above, after a sequence of $u v$-switch in C_{2}, we get $M_{1,2}$ from $M_{1,1}$ such that every component of $\left\langle M^{-} \cup M_{1,2}\right\rangle$ sharing a vertex with C_{2} is a path except for D_{2}. Since $w_{1} \in V\left(C_{2}\right)$ and $w_{1} \neq v_{2}$, it follows that the cycle component D_{1} becomes a path component in $\left\langle M^{-} \cup M_{1,2}\right\rangle$ if it was unchanged when we worked on C_{1}.

Continuing this procedure in such way, we get $M_{1, m}$ from $M_{1, m-1}$ such that every component of $\left\langle M^{-} \cup M_{1, m}\right\rangle$ sharing a vertex with C_{m} is a path except for D_{m}. But, D_{m} has become a part of a path component in $\left\langle M^{-} \cup M_{1,1}\right\rangle$. In summary, all cycles M_{1}-good cycles C_{1}, \ldots, C_{m} become $M_{1, m}$-good. Note that $E\left(C^{*}\right) \cap M_{1}^{*}=E\left(C^{*}\right) \cap M_{1}$ for any $C^{*} \in \mathcal{C} \backslash\left\{C_{1}, \ldots, C_{m}\right\}$ and $M_{1} \cap E_{F_{1}}(v)=\left\{v v^{*}\right\}$ for any $v \in V\left(C_{1} \cup \ldots \cup C_{m}\right)$. It follows that $M_{1, m}$ is a feasible matching and all M_{1}-good cycles are $M_{1, m}$-good, i.e., $M_{1} \prec M_{1}^{*}$, giving a contradiction to the maximality of M_{1}, which completes our proof.

References

[1] Jin Akiyama, Geoffrey Exoo, and Frank Harary. Covering and packing in graphs. III: Cyclic and acyclic invariants. Mathematica Slovaca, 30(4):405-417, 1980.
[2] Jin Akiyama, Geoffrey Exoo, and Frank Harary. Covering and packing in graphs iv: Linear arboricity. Networks, 11(1):69-72, 1981.
[3] Noga Alon. The linear arboricity of graphs. Israel Journal of Mathematics, 62(3):311-325, 1988.
[4] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience series in discrete mathematics and optimization. Wiley, 3rd ed edition, 2008.
[5] Guantao Chen, Yanli Hao, and Guoning Yu. Linear arboricity of degenerate graphs. Journal of Graph Theory, 2023.
[6] Marek Cygan, Jian-Feng Hou, Łukasz Kowalik, Borut Lužar, and Jian-Liang Wu. A planar linear arboricity conjecture. Journal of Graph Theory, 69(4):403-425, 2012.
[7] Hikoe Enomoto and Bernard Péroche. The linear arboricity of some regular graphs. Journal of Graph Theory, 8(2):309-324, 1984.
[8] Asaf Ferber, Jacob Fox, and Vishesh Jain. Towards the linear arboricity conjecture. Journal of Combinatorial Theory. Series B, 142:56-79, 2020.
[9] Stefan Glock, Daniela Kühn, and Deryk Osthus. Optimal path and cycle decompositions of dense quasirandom graphs. Journal of Combinatorial Theory. Series B, 118:88-108, 2016.
[10] Filip Guldan. The linear arboricity of 10-regular graphs. Mathematica Slovaca, 36(3):225228, 1986.
[11] Seifollah Louis Hakimi. On the degrees of the vertices of a directed graph. Journal of the Franklin Institute, 279(4):290-308, 1965.
[12] Leif K. Jørgensen. Contractions to K_{8}. Journal of Graph Theory, 18(5):431-448, 1994.
[13] Richard Lang and Luke Postle. An improved bound for the linear arboricity conjecture, 2020.
[14] Wolfgang Mader. Homomorphiesätze für graphen. Mathematische Annalen, 178(2):154-168, 1968.
[15] Wolfgang Mader. $3 n-5$ edges do force a subdivision of K_{5}. Combinatorica, 18(4):569, 1998.
[16] Colin McDiarmid and Bruce Reed. Linear arboricity of random regular graphs. Random Structures \& Algorithms, 1(4):443-445, 1990.
[17] Julius Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15(1):193-220, 1891.
[18] Zi-Xia Song and Robin Thomas. The extremal function for K_{9} minors. Journal of Combinatorial Theory, Series B, 96(2):240-252, 2006.
[19] Andrew Thomason. The extremal function for complete minors. Journal of Combinatorial Theory, Series B, 81(2):318-338, 2001.
[20] Vadim G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz., 3:25-30, 1964.
[21] Vadim G. Vizing. Critical graphs with given chromatic class. Discret. Analiz., 5:9-17, 1965.
[22] Ronen Wdowinski. Orientation-based edge-colorings and linear arboricity of multigraphs. Journal of Graph Theory, 102(4):633-647, 2023.
[23] Jian-Liang Wu. On the linear arboricity of planar graphs. Journal of Graph Theory, 31(2):129-134, 1999.
[24] Jian-Liang Wu. The linear arboricity of graphs on surfaces of negative euler characteristic. SIAM Journal on Discrete Mathematics, 23(1):54-58, 2009.
[25] Jian-Liang Wu and Yu-Wen Wu. The linear arboricity of planar graphs of maximum degree seven is four. Journal of Graph Theory, 58(3):210-220, 2008.

[^0]: *Partially supported by NSF grant DMS-1855716 and DMS-2154331, gchen@gsu.edu
 ${ }^{\dagger}$ Partially supported by the GSU Provost's Dissertation Fellowship, yhao4@gsu.edu
 ${ }^{\ddagger}$ The corresponding author, partially supported by the Doctoral Fellowship of GSU, gyu6@gsu.edu

